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Simultaneous Search in Competitive Markets

Naohiko Wakutsu∗

Abstract

This paper examines simultaneous search behavior of a firm for the highest selling
price and the lowest wage rate. It begins by formulating simultaneous search problem
of a competitive firm, and then characterizes the optimal search. The comparative
static results and some welfare implications follow. In the end, for a possible exten-
sion, simultaneous search problem of a monopolist is considered.
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1 Introduction

Through his seminal article in 1961, Stigler (1961) called attentions of the profession to

studies on individual behavior of search. By now, the literature has become huge, diverting

itself in several directions. Although it is potentially extendable to other contexts, most

models on personal search have been originally proposed as either consumer search or job

search. Few have focused on a firm’s search. This paper studies a firm’s search.

Consumer search and job search are the two most active areas of research on individual

search. Consumer search is often seen as search for the lowest price while job search is seen

as search for the highest price. So, these are in some sense two extreme cases. As discussed

below, a firm’s search contains both aspects. Furthermore, it turns out shortly that a firm’s

search behavior is different from a consumer’s, even though both of them search for lower

prices.

There has been several different search strategies that searchers may take. They in-

clude sequential strategy, fixed-sample-size (fss) strategy, and their hybrid, optimal search

strategy, among others.1 Every one of these has its own advantage. So, it is not possible to

∗E-mail address: nwakutsu@dokkyo.ac.jp
1For instance, see Rothschild (1974) and Weitzman (1971) for sequential search, Manning and Morgan

(1982) and Morgan (1983) for fss search and Morgan and Manning (1985) and Chade and Smith (2006)
for optimal search.
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claim in general which dominates which search rules.2 This paper restricts its attention to

fss search in which a searcher determines how much to search before she starts searching.

The advantage of this search rule includes that a searcher may collect information more

quickly. Note, however, that our attention to this search strategy does not means that we

insist that firms follow this search rule more than others. No doubt there are some cases

in which another rule fits better.

The model of concern in this paper is as follows. Consider a firm that produces a

single commodity y by using inputs x ∈ Rl where Rl is an l-dimensional real space with

some integer l ≥ 1. Unlike standard firm models, suppose that there are several consumer

markets for commodity y and several factor markets for some input xi. Moreover, suppose

that each market is characterized by a parameter and that the firm knows the distributions

of the parameter values but is ignorant of the exact location of each value. That is, it

knows existing market types and the frequencies, but cannot tell which market is of which

type. The firm, however, can “visit” any of those markets at some cost and see its complete

characteristics. To be more specific, by canvassing a consumer market for commodity y

(or a factor market for input xi), he can learn the selling price (or the wage rate) in that

market.

In such a setup, a firm now involves two problems to solve for his ultimate purpose of

profit maximization: a conventional problem on production and an additional problem on

search. Here, not only how many units of x and y to use and produce, but also where to

buy xi and where to sell y come into consideration.

The objective in this paper is to formally formulate a firm’s problem of search in this

setup and to examine an optimal search behavior.

The paper proceeds as follows. Section 2 formally constructs a firm’s problem of si-

multaneous fss search in some simplified setting. In section 3, we characterize an optimal

simultaneous search by solving the firm problem. Sections 4 and 5 consider comparative

statics and production. In section 6, some welfare implications of the firm’s search is

discussed. To conclude, section 7 remarks some extensions and limitations of our model.

2 Firm’s Simultaneous Search Problem

The model of concern in this paper is based on the following assumptions.

Assumption 1. A firm, whose technology is represented by a function ζ : R2 → R, pro-
duces a commodity y by using x = (x1, x2) as inputs.

2For more discussion on this matter, see for example Morgan and Manning (1985).
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Assumption 2. There is a set of competitive consumer markets for commodity y, offering

various selling prices p as a whole.

Assumption 3. There is a set of competitive factor markets for input x1, offering various

input prices w1 as a whole.

Assumption 4. There is only one factor market for input x2, which is competitive and

offers an input price w2.

Assumption 5. The distributions of selling prices for y and input prices for x1 are known,

but the exact location of any particular price is not except those of the lowest selling price

and the highest input price.

Assumption 6. The firm learns the selling price in a consumer market at cost cλ and the

input price in a factor market for input x1 at cost cθ.

Assumptions 1–6 give a simple setup for our analysis on a firm’s simultaneous search

behavior. Of course, we can obtain more general setups under weaker assumptions. For

example, search can involve more than three prices; neither consumer markets nor factor

markets are necessarily competitive; or price locations can be completely uncertain at the

outset. Some of those cases will be discussed later.

Before proceeding, it is better for concreteness to propose a possible interpretation of

this economy. The consumer markets consist of one “domestic” and many other “foreign”

markets. The firm under consideration is an incumbent of this domestic market. The

selling price he undergoes in this domestic market is very low, so he wants to “export”

his product to a more profitable market. He knows the ranges of selling prices offered in

foreign markets, but cannot tell which price belongs to which market. Fortunately, such

information is obtainable through “marketing research” whose cost is cλ for each market.

While the firm exports his product to a foreign market, transportation cost becomes

his concern. If x1 is an input for physical distribution of commodity y, then the input price

for x1 is the “distribution cost.” Suppose that several companies offer this distribution

service x1 at different prices. The firm under consideration knows one of the companies.

Unfortunately, this company is inferior in exporting y and charges the highest price among

all distribution firms, since it is specialized to domestic transportation. Once again, he

knows the distribution of asking prices for this service, but is ignorant of the exact loca-

tions except one. In exchange of cθ per company, he can learn the asking prices of other

companies. Since it improves its physical distribution system, the firm’s search for the

lowest input price may be considered as “cost-reducing process R&D”.
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The following notations are used throughout the paper. The lowest selling price for

commodity y is written by λp0. The highest factor price for input x1 is written by θw0.

With these, the associated price dispersions for commodity y and input x1 are denoted

by [λp0, λp0] and [θw0, θw0]. By construction, we let λ ≥ 1 with λ = 1 and let θ ≤ 1

with θ = 1 where λ ∈ [λ, λ] and θ ∈ [θ, θ]. We call p0 and w0 as “reference prices” while λ

and θ as a “premium” or a “discount factor”, respectively.

Furthermore, the underlying cumulative distribution functions (cdf) for premium λ and

discount factor θ are written as F and G, respectively. Together with p0 and w0, they

also provide the price distributions for commodity y and input x1. The probability density

functions (pdf) of F and G are given in the associated lower-case letters, f and g.

Now we start modeling a firm’s simultaneous search problem in this setting. Here, the

firm’s problem consists of two components: production and search. That is, he decides not

only how many units of x and y to use and to produce, but also from which market to

buy x1 and to which market to sell y in order to maximize his expected profit. We consider

a two-stage setup, where he conducts searches in stage 1 and begins production in stage 2.

From the firm’s viewpoint, λ and θ are random variables with known probabilities. So,

the search problem simplifies into a problem of choosing the numbers of observations nλ

and nθ, which we refer to as intensities of search.

Begin by stage 2. The firm’s problem in stage 2 is a conventional production problem.

That is, given a selling price λp0 and input prices θw0 and w2, it solves

max
y,x1,x2

λp0y − θw0x1 − w2x2

subject to y = ζ(x1, x2).

The objective function λp0y − θw0x1 − w2x2 is the direct profit.3 The solution to this

second-stage problem is a set of supply and factor demand functions:

y∗(λp0, θw0, w2),

x∗
i (λp0, θw0, w2) i = 1, 2.

Substituting these into the direct profit gives the indirect profit function

π(λp0, θw0, w2) = λp0y
∗(λp0, θw0, w2)− θw0x

∗
1(λp0, θw0, w2)− w2x

∗
2(λp0, θw0, w2).

Note the basic properties of the indirect profit function that π is nondecreasing in selling

price λp0 and nonincreasing in input prices θw0 and w2.

3Please note that the profit does not include either nλcλ or nθcθ. It is because those costs are already
sunk.



－ 59－

Go to stage 1. First, consider a situation after search. By conducting search of in-

tensity n = (nλ, nθ), the firm observes nλ premiums, λ1, · · · , λnλ
, and nθ discount factors,

θ1, · · · , θnθ
. For each pair of (λi, θj), he computes the direct profit and then solves the max-

imization problem to obtain the indirect profit function π(λip0, θjw0, w2). Here, i and j are

integers with 1 ≤ i ≤ nλ and 1 ≤ j ≤ nθ. In sum, he has nλnθ profit functions to compare.

For his purpose of profit maximization, it is clear that he prefers λm and θm defined by

λm = max {λ1, . . . , λnλ
} (1)

θm = min {θ1, . . . , θnθ
}. (2)

since π(λmp0, θmw0, w2) ≥ π(λip0, θjw0, w2) for any i and j.

Before going to search, he can compute this π for each pair of (λm, θm) ∈ [λ, λ]× [θ, θ].

The pdf of λm, which is the maximum of a sample of nλ independent observations from an

identical population with the pdf f , is

f ∗(λm|nλ) = nλ[F (λm)]
nλ−1f(λm), nλ ≥ 1. (3)

The pdf of θm, which is the minimum of a sample of nθ independent observations from an

identical population with the pdf g, is

g∗(θm|nθ) = nθ[1−G(θm)]
nθ−1g(θm), nθ ≥ 1. (4)

Let F ∗ and G∗ be the corresponding cdf’s. Let n = (nλ, nθ) and α = (cλ, cθ, p0, w0, w2).

Then the firm’s expected direct search profit net of search costs equals

H(n;α) = E[π(λmp0, θmw0, w2)|n]− nλcλ − nθcθ (5)

where E stands for the expectation taken with respect to distributions F ∗ and G∗:

E[π(λmp0, θmw0, w2)|n] =
∫ λ

λ

∫ θ

θ

π(λmp0, θmw0, w2)f
∗(λm|nλ)g

∗(θm|nθ) dλm dθm. (6)

E[π(·)|n] is termed as the expected indirect profit. The firm’s search problem is to select

intensity n so at to maximize the expected direct search profit net of search cost H(n;α)

in (5).4

4Note that H(n) in (5) is well-defined under the stated assumptions. In particular, by Assumptions 5
the firm knows the exact locations of λ and θ at the outset. So, even if nλ=0 and/or nθ = 0, he
has y∗(λp0, θw0, w2) and x∗

i (λp0, θw0, w2) and obtains π(λp0, θw0, w2). It is obvious for other nonnega-
tive integers. Hence H(n) is well-defined. One may want to weaken this assumption by imposing complete
ignorance of price locations. In that case, some adjustments in defining f∗ and g∗ are necessary for a
well-defined H(n). For necessary adjustments that results in a well-defined H(n) (as a Lebesgue-Stieltjes
integral), see Manning and Morgan (1982), pp.205-6.
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3 The Solution of Firm’s Problem

This section characterizes an optimal simultaneous search of this firm, by solving the prob-

lem set above. Before doing so, however, let us introduce some additional assumptions on

technical grounds.

The first one is about intensity n. The firm’s search problem is to select n so as to

attain a maximized H(n) in (5). Precisely speaking, this is an integer-valued problem. An

optimal n, written as n∗, belongs to Z2
+, where Z+ is a set of nonnegative integers. However,

it becomes analytically more convenient if n can be treated as continuous variables. For

this reason, we set the following assumption.

Assumption 7. n is a nonnegative two-dimensional real.

Under this additional assumption, the firm’s simultaneous search problem now becomes

to choose n ∈ R2
+ that maximizes (5).5

The interior solutions may be of particular interest. To this end, let production func-

tion ζ, indirect profit function π and expected direct search profit net of search cost H

satisfy the following assumptions.

Assumption 8. Let xi = x∗
i (λp0, θw0, w2) for i = 1, 2. Then, ζ is differentiable in x and

satisfies

lim
xi→xi

∂ζ(x)

∂xi

= +∞, i = 1, 2.

Assumption 9. π(λmp0, θmw0, w2) is differentiable in λmp0, θmw0 and w2.

Assumption 10. H(n;α) is twice differentiable in n and α.

Assumption 8 makes productions at x ∈ (x1,∞)×(x2,∞) essential and ensures positive

search intensities. Assumptions 8 and 9 together make calculus approach relevant to this

problem.

The following two propositions characterize the profit-maximizing search intensity of

the firm under the stated assumptions.

Proposition 1. An optimal search intensity n∗ = (n∗
λ, n

∗
θ) satisfies

∫ λ

λ

∫ θ

θ

π(λmp0, θmw0, w2)
∂f ∗(λm|nλ)

∂nλ

g∗(θm|nθ) dλm dθm = cλ (7)

5This is convention in the profession on this subject. One justification for it is that errors resulting
from this assumption are not great in the sense that two n∗’s, one from real-valued problem and one from
original, differ by less than 1 if H is strictly concave. See Manning and Morgan (1982), p.206.



－ 61－

and ∫ λ

λ

∫ θ

θ

π(λmp0, θmw0, w2)f
∗(λm|nλ)

∂g∗(θm|nθ)

∂nθ

dλm dθm = cθ. (8)

Proof. For the interior solution, necessarily DH = 0 holds. (7) and (8) are just this

rearranged.

Proposition 1 states that the optimal intensity of search equates the marginal benefit of

search with its marginal cost. The LHS of (7) is ∂E[π|nλ, nθ]/∂nλ, meaning the marginal

expected profit resulting from additional increment of search for λ. The RHS is its cor-

responding cost. Similarly, the LHS of (8), ∂E[π|nλ, nθ]/∂nθ gives the marginal expected

after-search profit arising from additional search for θ. The RHS is its cost.

Proposition 2. (7) and (8) represent a local optimal search intensity if, for n = n∗,

[∫ λ

λ

∫ θ

θ

π(λmp0, θmw0, w2)
∂2f ∗(λm|nλ)

∂nλ
2

g∗(θm|nθ) dλm dθm

]

·

[∫ λ

λ

∫ θ

θ

π(λmp0, θmw0, w2)f
∗(λm|nλ)

∂2g∗(θm|nθ)

∂nθ
2

dλm dθm

]

>

[∫ λ

λ

∫ θ

θ

π(λmp0, θmw0, w2)
∂f ∗(λm|nλ)

∂nλ

∂g∗(θm|nθ)

∂nθ

dλm dθm

]2

. (9)

Further, if (9) holds for all n ∈ R2
+, then (7) and (8) represent global optimum.

Proof. In Appendix 1.

The condition that (9) imposes on the optimal search is that, in some neighborhood

of n∗, “own effects” on marginal benefits of search must outweigh their “cross effects”.

We cannot determine whether the inequality holds in general. From Corollaries 5 and 6

in Appendix 2, we know that the LHS of (9) is positive and the RHS is nonnegative under

Assumption 8. Beyond that, more specific formula for f and g are necessary.

4 Comparative Statics

The firm’s problem in our setting involves two stages: stage of search and stage of pro-

duction. Of particular interest is how a firm’s search behavior changes if the environment

of search or the environment of second-stage production changes. These are problems

concerning comparative statistics.

Suppose that in some neighborhood of n∗, (9) holds. Then, by Proposition 2, a (locally)

optimal search intensity exists. Moreover, since this implies that D2H (the Hessian of H)
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is nonzero, (in principle) we can locally solve implicit relations (7) and (8) for the optimal n

as functions of parameters. That is, with α = (cλ, cθ, p0, w0, w2)

n∗
λ = n∗

λ(α) (10)

n∗
θ = n∗

θ(α). (11)

Substituting these into (5) provides the firm’s expected indirect search profit net of search

costs

ϕ(α) = H(n∗(α);α) = E[π(λmp0, θmw0, w2)|n∗(α)]− n∗
λ(α)cλ − n∗

θ(α)cθ. (12)

In what follows, we examine the effect of changes in parameter α on the optimal search

intensity n∗. The meaning of changes in cλ, cθ and w2 is clear. An increase in p0 means

that the distribution of selling prices is scaled up by a constant proportion. Of course, this

increases both of the mean and variance. So, it is a special kind of increasing risk. The

implication of an increase in w0 is similar.

Proposition 3. Suppose that (9) holds for n = n∗. Then,

(i) the optimal search intensity for the highest selling discount factor λm is nondecreasing

with scale changes in the distribution of selling prices. That is,

∂n∗
λ

∂p0
≥ 0. (13)

(ii) The optimal search intensity for the lowest discount factor θm of input x1 is indepen-

dent of scale changes in the distribution of selling prices p0. That is,

∂n∗
θ

∂p0
= 0. (14)

(iii) The optimal search intensity for the highest selling discount factor λm is independent

of scale changes in the distribution of discount factors of input x1. That is,

∂n∗
λ

∂w0

= 0. (15)

(iv) The optimal search intensity for the lowest discount factor θm of input x1 is nonde-

creasing with scale changes in the distribution of discount factors of input x1. That

is,
∂n∗

θ

∂w0

≥ 0. (16)
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(v) The optimal search intensity for the highest selling discount factor λm is independent

of changes in prices of input x2. That is,

∂n∗
λ

∂w2

= 0. (17)

(vi) The optimal search intensity for the lowest discount factor θm of input x1 is indepen-

dent of changes in prices of input x2. That is,

∂n∗
θ

∂w2

= 0. (18)

(vii) An increase in search cost for the highest selling discount factor decreases the optimal

amount of search for the highest selling discount factor λm. That is,

∂n∗
λ

∂cλ
< 0. (19)

(viii) An increase in search cost for the lowest discount factor of input x1 decreases the

optimal amount of search for the lowest discount factor θm of input x1. That is,

∂n∗
θ

∂cθ
< 0. (20)

(ix) The optimal search intensity for the highest selling discount factor λm is independent

of changes in search costs for the lowest discount factor of input x1. That is,

∂n∗
λ

∂cθ
= 0. (21)

(x) The optimal search intensity for the lowest discount factor θm of input x1 is indepen-

dent of changes in search costs for the highest selling discount factor. That is,

∂n∗
θ

∂cλ
= 0. (22)

Proof. In Appendix 1.

Parts (vii) and (viii) of Proposition 3 are nothing but “the law of demand” for firm’s

search by viewing “price information” as one particular good. Parts (i) and (iv) say that

increased risk in the distributions of selling prices and input prices raises the associated op-

timal search level. The rest of the proposition shows insensitivity of firm’s search behaviors

to the other parameters.

Note that in consumer search, an increase in the list price of a non-searched-for com-

modity will increase the optimal amount of search for a searched-for-commodity if the two

commodities are substitutes (Manning and Morgan, 1982, p.210). So, the insensitivity of

firm’s search in part (vi) shows a difference in search behavior between sellers and buyers

even though both of them seek lower prices.
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5 Expected Production in Search Economy

In this section, we examine the benefit of search to a firm’s expected production in this

search economy.

Hotelling’s lemma tells us how to obtain the supply function y∗(·) and the factor demand

function x∗
i (·) from a profit function π(·), given a commodity price p and an input price wi.

Without search, it is

∂π(p, wi)

∂p
= y∗(p, wi),

−∂π(p, wi)

∂xi

= x∗
i (p, wi).

The counterpart of this derivative property in our setup is

∂ϕ(p0, w0, w2)

∂p0
=

∫ λ

λ

∫ θ

θ

λmy
∗(λmp0, θmw0, w2)f

∗(λm|nλ)g
∗(θm|nθ) dλm dθm,

−∂ϕ(p0, w0, w2)

∂w0

=

∫ λ

λ

∫ θ

θ

θmx
∗
1(λmp0, θmw0, w2)f

∗(λm|nλ)g
∗(θm|nθ) dλm dθm,

−∂ϕ(p0, w0, w2)

∂w2

=

∫ λ

λ

∫ θ

θ

x∗
2(λmp0, θmw0, w2)f

∗(λm|nλ)g
∗(θm|nθ) dλm dθm.

Given a reference price p0, a reference input price w0 and an input price w2, the expressions

in the RHS are interpreted as the expected supply and factor demand functions. It says

that, for a non-searched-for commodity such as input x2, taking expectation of the factor

demand function x∗
2(·) delivers the expected factor demand function, but this does not

apply for searched-for commodities. To obtain the expected supply function, the supply

function y∗(·) must be weighted by its searched-for premium λm while its expectation being

taken. Similarly, to represent the expected factor demand function, the factor demand

function x∗
1(·) has to be weighted by its searched-for discount factor θm while its expectation

being taken.

The next proposition describes a relationship between optimal search and optimal ex-

pected production.

Proposition 4. Suppose that (9) holds. Then, search brings positive marginal benefit to

expected production. That is, the expected marginal production benefit of search is positive.

Proof. For the proof, it suffices to show

∫ λ

λ

∫ θ

θ

λmy
∗(λmp0, θmw0, w2)

∂f ∗(λm|n∗
λ)

∂nλ

g∗(θm|n∗
θ) dλm dθm > 0, (23)



－ 65－

∫ λ

λ

∫ θ

θ

θmx
∗
1(λmp0, θmw0, w2)f

∗(λm|n∗
λ)
∂g∗(θm|n∗

θ)

∂nθ

dλm dθm > 0.

These follow instantly from the Envelope Theorem, and Corollaries 3 and 4. For ex-

ample, see (23). By the optimality of the supply function y∗(·), the Envelope Theorem

gives ∂(λmp0y∗)
∂λm

= p0y
∗ that is positive under Assumption 8. Corollary 3 in Appendix 2 then

implies (23). The other claim can be established in a similar manner.

Production does not begin until search is complete. Furthermore, production utilizes

all the findings obtained through search. Proposition 4 reflects this sequence of the firm’s

move. Note

∫ λ

λ

∫ θ

θ

y∗(λmp0, θmw0, w2)
∂f ∗(λm|n∗

λ)

∂nλ

g∗(θm|n∗
θ) dλm dθm = 0, (24)

∫ λ

λ

∫ θ

θ

x∗
1(λmp0, θmw0, w2)f

∗(λm|n∗
λ)
∂g∗(θm|n∗

θ)

∂nθ

dλm dθm = 0.

These contrasts suggest why simply taking the expectation of y∗(·) and x∗
1(·) is not enough

to represent the expected supply and factor demand functions.

6 Some Welfare Implications

This section considers some welfare implications of simultaneous search. Specifically, we

characterize welfare-maximizing simultaneous search and then figure out the following is-

sues. (1) Does profit-maximizing search maximize social welfare? (2) If not, how does it

different from welfare-maximizing search? (3) At least, does it make society better-off?

To address these, we need clarify what we mean by “society”. In what follows, we

interpret both of inputs x1 and x2 as labor.

Assumption 11. Society is composed of a firm under consideration, its consumers and its

employees (the laborers of x1 and x2).

Assumption 12. Each commodity market has an identical representative consumer and

each labor market of xi has an identical representative laborer.

A representative consumer’s indirect utility and that of a representative laborer of xi

are denoted, respectively, by

vc(p) = vc(p, Ic) = max
y,z

u(y, z) subject to py + z = Ic,

vi(wi) = vi(wi, Ii, L) = max
z,xi

u(z, L− xi) subject to z = wixi + Ii, (25)
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where Ic and Ii are exogenous initial endowments of a consumer and a laborer of xi respec-

tively, z, a numéraire and L, total time available to each laborer.6

Assumption 13. Social surplus is a sum of firm’s profit and the indirect utility of its

consumers and employees.

Under these additional assumptions, social surplus is simply written as

π(λmp0, θmw0, w2) + vc(λmp0) + v1(θmw0) + v2(w2).

In this simplified setting, we discuss the welfare implications of simultaneous search.

6.1 The Welfare-Maximizing Simultaneous Search Problem

First, we formulate the problem of welfare-maximizing simultaneous search. The expected

social welfare net of search cost is written as

W (n;α) = H(n;α) +

∫ λ

λ

vc(λmp0)f
∗(λm|nλ) dλm +

∫ θ

θ

v1(θmw0)g
∗(θm|nθ) dθm. (26)

The problem of welfare-maximizing simultaneous search is to maximize (26) with respect

to n.

For technical reasons, we add two conventional assumptions on functions W , vc and vi.

Assumption 14. W (n, α) is twice differentiable in n and α.

Assumption 15. vc(·) and vi(·) are both differentiable in their arguments.

The next two propositions parallel Propositions 1 and 2. They characterize a socially

optimal intensity of simultaneous search.

Proposition 5. Suppose (9) holds. The welfare-maximizing search intensity n∗∗ = (n∗∗
λ , n∗∗

θ )

satisfies

∫ λ

λ

∫ θ

θ

π(λmp0, θmw0, w2)
∂f ∗(λm|nλ)

∂nλ

g∗(θm|nθ) dλm dθm = cλ−
∫ λ

λ

vc(λmp0)
∂f ∗(λm|nλ)

∂nλ

dλm,

(27)∫ λ

λ

∫ θ

θ

π(λmp0, θmw0, w2)f
∗(λm|nλ)

∂g∗(θm|nθ)

∂nθ

dλm dθm = cθ−
∫ θ

θ

v1(θmw0)
∂g∗(θm|nθ)

∂nθ

dθm.

(28)

6It is noted here for later reference that we are imposing Walras’s law (or equality constraint) in each
maximization problem. One implication of this is that marginal utility of income is positive.
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Proof. For the interior solution, DW = 0 necessarily holds. These are just this rearranged.

Proposition 5 says that welfare-maximizing search equates marginal expected social

benefit of search to its marginal expected social cost. The difference from Proposition 1

that characterizes profit-maximizing search is that marginal expected costs of search now

include costs incurred by consumers and employees. It is noted that Corollaries 3 and 4 in

Appendix 2 imply

∫ λ

λ

vc(λmp0)
∂f ∗(λm|nλ)

∂nλ

dλm ≤ 0,

∫ θ

θ

v1(θmw0)
∂g∗(θm|nθ)

∂nθ

dθm ≤ 0

since vc(·) is nonincreasing in λmp0 while v1(·) is nondecreasing in θmw0.

Proposition 6. (27) and (28) represent (local) welfare-maximizing search intensity if, at

n∗∗,

∫ λ

λ

∫ θ

θ

π(λmp0, θmw0, w2)
∂2f ∗(λm|nλ)

∂nλ
2

g∗(θm|nθ) dλm dθm < −
∫ λ

λ

vc(λmp0)
∂2f ∗(λm|nλ)

∂nλ
2

dλm,

(29)∫ λ

λ

∫ θ

θ

π(λmp0, θmw0, w2)f
∗(λm|nλ)

∂2g∗(θm|nθ)

∂nθ
2

dλm dθm < −
∫ θ

θ

v1(θmw0)
∂2g∗(θm|nθ)

∂nθ
2

dθm,

(30)

and
[∫ λ

λ

∫ θ

θ

π(·)∂
2f ∗(λm|nλ)

∂nλ
2

g∗(θm|nθ) dλm dθm +

∫ λ

λ

vc(λmp0)
∂2f ∗(λm|nλ)

∂nλ
2

dλm

]

·

[∫ λ

λ

∫ θ

θ

π(·)f∗(λm|nλ)
∂2g∗(θm|nθ)

∂nθ
2

dλm dθm +

∫ θ

θ

v1(θmw0)
∂2g∗(θm|nθ)

∂nθ
2

dθm

]

>

[∫ λ

λ

∫ θ

θ

π(·)∂f
∗(λm|nλ)

∂nλ

∂g∗(θm|nθ)

∂nθ

dλm dθm

]2

. (31)

Further, if (29)-(31) are true for all n ∈ R2
+, (27) and (28) give global maximum.

Proof. In Appendix 1.

Notice first that none of these holds in general. For both of (29) and (30), Theorem 2

and Corollaries 2, 5 and 6 in Appendix 2 imply that the both sides of the inequalities may

be negative. For (31), the both sides may be positive.
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The economic meaning of these conditions is given as follows. (29) says that, in expec-

tation, firm’s marginal profit must be more sensitive to search than consumer’s marginal

utility. Similarly, (30) states that, in expectation, firm’s marginal profit must be more

sensitive to search than employee’s marginal utility. One possible interpretation for (31)

is that “own effects” on marginal benefits of search in society must outweigh their “cross

effects” in society.

6.2 Social Sub-optimality of Firm’s Search

Suppose that (29)–(31) are all satisfied. Then, the next proposition answers our first

question.

Proposition 7. Suppose that (9) and (29)–(31) hold. Then, profit-maximizing search does

not maximize social surplus.

Proof. In Appendix 1.

The next proposition exhibits how profit-maximizing search differs from welfare-maximizing

search.

Proposition 8. Suppose that (9) and (29)-(31) hold. Let n∗ and n∗∗ be intensities of profit-

maximizing search and welfare-maximizing search, respectively. Then, n∗ > n∗∗ holds.

Proof. In Appendix 1.

Proposition 8 states that whether it is for the lowest prices or the highest prices, a

profit-maximizing firm searches too much relative to social optimum.

6.3 Does Search Make Society Better-Off?

Search changes a resulting economy. Proposition 7 shows that firm’s profit-maximizing

search fails to maximize social welfare, but is it still worth doing for society?

An obvious measure for this argument is surplus difference between the two economies,

with and without search. If a firm chooses intensity n∗ > 0, then the expected social surplus

in this search economy is equal to W (n∗(α);α) in (26). In contrast, without search, social

surplus becomes

π(λp0, θw0, w2) + vc(λp0) + v1(θw0) + v2(w2).

In comparison, search is beneficial if the surplus difference is positive, and is harmful if it

is negative.
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After rearrangement, this is to compare the firm’s profit difference

ϕ(α)− π(λp0, θw0, w2) (32)

with the total utility differences of consumers and laborers

−
∫ λ

λ

vc(λmp0)f
∗(λm|nλ) dλm + vc(λp0) −

∫ θ

θ

v1(θmw0)g
∗(θm|nθ) dθm + v1(θw0). (33)

By the properties of π(·) and vj(·), both (32) and (33) are nonnegative. So, clearly, there

are conflicts between a firm and its customers and laborers.

While profit is monetary, utility is a subjective measure. Hence, it is helpful, especially

in practice, to reexpress the utility difference in (33) in monetary scale. It is noted, however,

that utility theory is purely ordinal in nature and thus all we can do is approximation.

One useful tool for this purpose is Hicks’s equivalent variation (EV). To derive it, first

rewrite consumer utility and laborer i’s utility by using indirect money metric function:

ec(p
′, vc(p)) = min

ŷ,ẑ
p′ŷ + ẑ subject to uc(ŷ, ẑ) = vc(p)

ei(vi(wi)) = min
ẑ,x̂i

ẑ subject to ui(ẑ, L− x̂i) = vi(wi)

where p and p′ are two different prices of commodity y.

For consumer utility in economies with and without search, set p = λmp0 for an economy

with search and p = λp0 for an economy without search while setting p′ = λp0 for both

economies to get

ec(λp0, vc(λmp0)) = λp0 ŷ(λp0, vc(λmp0)) + ẑ(λp0, vc(λmp0))

ec(λp0, vc(λp0)) = λp0 ŷ(λp0, vc(λp0)) + ẑ(λp0, vc(λp0)).

For laborer 1’s utility in economies with and without search, set w = θmw0 for an economy

with search and w = θw0 for an economy without search to have

e1(v1(θmw0)) = ẑ(v1(θmw0))

e1(v1(θw0)) = ẑ(v1(θw0)).

The expected EV for consumer, EVc, is obtained by taking the difference of the above ec’s

and then taking the expectation with respect to F ∗, so that

EVc =

∫ λ

λ

[λp0 ŷ(λp0, vc(λmp0)) + ẑ(λp0, vc(λmp0))] f
∗(λm|nλ) dλm

− λp0 ŷ(λp0, vc(λp0))− ẑ(λp0, vc(λp0)).
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Likewise, the expected EV for laborer 1, EV1 is derived by taking the difference of the

above e1’s and then taking the expectation with respect to G∗, so that

EV1 =

∫ θ

θ

ẑ(v1(θmw0))g
∗(θm|nθ) dθm − ẑ(v1(θw0))

=

∫ θ

θ

θmw0 x̂1(v1(θmw0))g
∗(θm|nθ) dθm − θw0 x̂1(v1(θw0)),

where the last equality follows from the constraint in the original problem in (25). Applying

these, we summarize this discussion as follows.

Proposition 9. Suppose that (9) holds. Search is worth doing if ϕ(α)− π(λp0, θw0, w2) >

−EVc − EV1 holds.

7 Extensions and Limitations

In this paper, we analyzed a simultaneous fixed-sample-size search problem of a competitive

firm. To conclude, we remark some extensions and limitations of the model presented in

this paper.

The model discussed above is based on several assumptions. While some are essential

assumptions to construct a firm’s search problem, others are rather for simplifying purposes.

For example, multiple-markets setting in Assumptions 2 and 3 are essential, but markets

need not be competitive if one condition explained below is satisfied.

Consider a monopolist. He faces a set of consumer markets, each of which has a well-

defined, downward-sloping inverse demand function p(·) ∈ P where P represents a set

of inverse demand functions for commodity y in the economy. Furthermore, as before, he

knows the distribution of demand functions he faces (i.e., market types) and the frequencies,

but is ignorant of the exact location of any specific function. Let the rest of the setting

remain the same.

Begin with stage 2. The monopolist problem in this stage is production problem. That

is, given inverse demand p(·) ∈ P and input prices θw0 and w2, he maximizes direct

profit p(y)y − c(y) with respect to y, where c(y) is the firm’s cost function for a fixed y

such that

c(y) = c(θw0, w2, y) = min
x1,x2

θw0x1 + w2x2 subject to ζ(x1, x2) = y. (34)

Let y∗ be the monopolist’s optimal supply. Then, it necessarily satisfies

∂p(y)

∂y
y + p(y) =

∂c(y)

∂y
. (35)
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The argument minimum in (34) at y∗ gives the monopolist’s input demands x∗
i . Substituting

these into the direct profit yields indirect profit π.

Go to stage 1. By conducting search of intensity n, a monopolist observes nλ inverse

demand functions, p1(·), p2(·), . . . , pnλ
(·), and nθ discount factors, θ1, θ2, . . . , θnθ

. Let i

and j be integers such that 1 ≤ i ≤ nλ and 1 ≤ j ≤ nθ. For each (pi(·), θj), he considers a

maximization problem such that

max
y

pi(y)y − c(θjw0, w2, y). (36)

Let y∗ij be the profit-maximizing quantity supplied for this (pi(·), θj)-pair and let pij = pi(y
∗
ij)

be a selling price associated with this quantity. The monopolist’s indirect profit π for this

pair (pi(·), θj) is then
πi j = pijy

∗
ij − c(θjw0, w2, y

∗
ij)

In case of n intensity of search, the monopolist obtains in total nλnθ indirect profits to

compare.

Before going to search, he can compute y∗ij for each possible pair of (pi(·), θj). Fix θj

and consider a set P ′ = {pij ∈ R+ : i is such that pi(·) ∈ P}. Since pij ∈ P ′ is a real

number, we can place pi(·) in ascending order to construct an increasing sequence ⟨p(s)(·)⟩ =
⟨p(1)(·), p(2)(·), . . . , p(nλ)(·)⟩ for the fixed θj. If ordering of pi(·) in ⟨p(s)(·)⟩ does not change

with θj, then this s successfully captures the profitability of demand functions p(·) ∈ P ,

since π is nondecreasing in selling price. That is, in that case, if we let

π(s) j = p(s)(y
∗
ij)y

∗
ij − c(y∗ij),

then s satisfies π(s+1) j ≥ π(s),j for any j.

If the demand functions p(·) ∈ P can be ordered according to profitability, then it holds

that for any intensity n

π∗ ≥ πi j for any i and j,

where π∗ is indirect profit when the monopolist faces inverse demand function p(nλ)(·)
and discount factor θm. Therefore, it is clear that, out of nλ inverse demand functions,

p1(·), p2(·), . . . , pnλ
(·), and nθ discount factors, θ1, θ2, . . . , θnθ

, he chooses p(nλ) and θm. In

other words, the monopolist simply seeks the most profitable consumer market for com-

modity y and the lowest input price for input x1. The monopolist’s objective function in

his search problem then becomes analogous to (5).

The key that enables us to use the simultaneous search model of a competitive firm

to a monopolist’s search is whether we can order different demand functions faced by a

monopolist according to profitability. If this condition fails, then our formulation presented
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is inappropriate since the firm’s expected profit function can no longer be written by using

pdf’s f ∗ and g∗ like before. If that condition still holds, then this approach remains useful

in studying the search behavior of monopolists and monopsonists.

Appendix 1

This appendix contains the proofs of Propositions 2, 3 and 6–8 in the text.

Proof of Proposition 2. The second-order sufficient condition for a relative maximum

is that the Hessian of H, D2H, is negative definite in some neighborhood of n∗. The

determinantal test for it is that every kth leading principal minor of |D2H| is positive if k

is even, and negative otherwise. D2H is

[
Hnλnλ

Hnλnθ

Hnθnλ
Hnθnθ

]
,

where

Hnλnλ
=

∂2E(π|nλ, nθ)

∂nλ
2

=

∫ λ

λ

∫ θ

θ

π(·)∂
2f ∗(λm|nλ)

∂nλ
2

g∗(θm|nθ) dλm dθm, (37)

Hnλnθ
= Hnθnλ

=
∂2E(π|nλ, nθ)

∂nλ∂nθ

=

∫ λ

λ

∫ θ

θ

π(·)∂f
∗(λm|nλ)

∂nλ

∂g∗(θm|nθ)

∂nθ

dλm dθm, (38)

and

Hnθnθ
=

∂2E(π|nλ, nθ)

∂nθ
2

=

∫ λ

λ

∫ θ

θ

π(·)f ∗(λm|nλ)
∂2g∗(θm|nθ)

∂nθ
2

dλm dθm. (39)

The first leading principal minors are (37) and (39). The determinantal test insists that

these be positive for n = n∗. Corollaries 5 and 6 in Appendix 2 imply that both of them

hold, since π(· ) is increasing in λmp0 and decreasing in θmw0, given Assumption 8.

The second principal minor is |D2H| = Hnλnλ
Hnθnθ

− [Hnλnθ
]2. The above test insists

that it be positive for n = n∗. (9) is just this rearranged.

Global optimality follows if those respective conditions hold for all n.

Proof of Proposition 3. Here, we use the approach developed by Silberberg (1974).

The firm’s (original) problem is maxn H(n;α) as in (5). Here, n = (nλ, nθ) and α =

(cλ, cθ, p0, w0, w2). The “primal-dual” problem of this maximization problem is minn,a ϕ(α)−
H(n;α). The Lagrangean of this primal-dual problem is then

L(n, α) = ϕ(α)−H(n;α). (40)
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By construction, L(n∗, α) necessarily satisfies the first- and second-order necessary con-

ditions for a minimum. They are

DL(n∗, α) =
[
Ln(n

∗, α) Lα(n
∗, α)

]
=

[
Hn(n

∗;α) ϕα(α)−Hα(n
∗, α)

]
≡ 0 (41)

D2L(n∗, α) =

[
Lnn(n

∗, α) Lnα(n
∗, α)

Lαn(n
∗, α) Lαα(n

∗, α)

]
is positive semidefinite. (42)

The latter condition (42) implies that its submatrix Lαα(n
∗, α) also satisfies the positive

semidefiniteness.

Twice differentiating the both sides of (40) with respect to α gives

Lαα(n, α) = ϕαα(α)−Hαα(n, α).

But at a neighborhood of n∗, (41) ensures ϕα(α) ≡ Hα(n
∗, α). Differentiate its both sides

with respect to α, yielding

ϕαα = Hαn(n
∗, α) · ∂n

∗

∂α
+Hαα.

By substitution, we obtain

Lαα = Hαn(n
∗, α) · ∂n

∗

∂α
.

From

Hα =
[
Hcλ Hcθ Hp0 Hw0 Hw2

]
=

[
−nλ −nθ

∂E(π|n)
∂(λmp0)

λm
∂E(π|n)
∂(θmw0)

θm
∂E(π|n)
∂w2

]
,

each element of Hαn are calculated as

Hcλnλ
= −1,

Hcλnθ
= 0,

Hcθnλ
= 0,

Hcθnθ
= −1,

Hp0nλ
=

∂2E(π|n)
∂(λmp0) ∂nλ

λm > 0,

Hp0nθ
=

∂2E(π|n)
∂(λmp0) ∂nθ

λm = 0,

Hw0nλ
=

∂2E(π|n)
∂(θmw0) ∂nλ

θm = 0,

Hw0nθ
=

∂2E(π|n)
∂(θmw0) ∂nθ

θm > 0,

Hw2nλ
=

∂2E(π|n)
∂w2 ∂nλ

= 0,
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Hw2nθ
=

∂2E(π|n)
∂w2 ∂nθ

= 0.

Here, the signs of the last six elements follow from the theorems and corollaries in Ap-

pendix 2 and the Envelop Theorem. In matrix notation,

Hαn =




−1 0
0 −1

Hp0nλ
0

0 Hw0nθ

0 0



.

So,

Lαα =




−∂n∗
λ

∂cλ
−∂n∗

λ

∂cθ
−∂n∗

λ

∂p0
−∂n∗

λ

∂w0
−∂n∗

λ

∂w2

−∂n∗
θ

∂cλ
−∂n∗

θ

∂cθ
−∂n∗

θ

∂p0
− ∂n∗

θ

∂w0
− ∂n∗

θ

∂w2

Hp0nλ

∂n∗
λ

∂cλ
Hp0nλ

∂n∗
λ

∂cθ
Hp0nλ

∂n∗
λ

∂p0
Hp0nλ

∂n∗
λ

∂w0
Hp0nλ

∂n∗
λ

∂w2

Hw0nθ

∂n∗
θ

∂cλ
Hw0nθ

∂n∗
θ

∂cθ
Hw0nθ

∂n∗
θ

∂p0
Hw0nθ

∂n∗
θ

∂w0
Hw0nθ

∂n∗
θ

∂w2

0 0 0 0 0



. (43)

To establish parts (i) and (iv) of the proposition, note that the positive semidefiniteness

of L∗
αα implies that its first leading principal minors are nonnegative. That is,

−∂n∗
λ

∂cλ
≥ 0 =⇒ ∂n∗

λ

∂cλ
≤ 0,

−∂n∗
θ

∂cθ
≥ 0 =⇒ ∂n∗

θ

∂cθ
≤ 0,

Hp0nλ

∂n∗
λ

∂p0
≥ 0 =⇒ ∂n∗

λ

∂p0
≥ 0,

Hw0nθ

∂n∗
θ

∂w0

≥ 0 =⇒ ∂n∗
θ

∂w0

≥ 0.

The last two inequalities are parts (i) and (iv) of the proposition.

By Young Theorem, D2L is symmetric. And so is Lαα. The symmetry of L∗
αα implies

−∂n∗
λ

∂cθ
= −∂n∗

θ

∂cλ
=⇒ ∂n∗

λ

∂cθ
=

∂n∗
θ

∂cλ
, (44)

−∂n∗
λ

∂w0

= Hw0nθ

∂n∗
θ

∂cλ
=⇒ sign(

∂n∗
λ

∂w0

) = sign(−∂n∗
θ

∂cλ
), (45)

−∂n∗
θ

∂p0
= Hp0nλ

∂n∗
λ

∂cθ
=⇒ sign(

∂n∗
θ

∂p0
) = sign(−∂n∗

λ

∂cθ
), (46)

∂n∗
λ

∂w2

= 0,

∂n∗
θ

∂w2

= 0.

The last two equations are parts (v) and (vi).
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For the rest of the statement, we need look at entire D2L =

[
Lnn Lnα

Lαn Lαα

]
, where

L∗
nn =

[
−Hnλnλ

−Hnλnθ

−Hnθnλ
−Hnθnθ

]
,

L∗
nα =

[
−Hnλcλ −Hnλcλ −Hnλp0 −Hnλw0 −Hnλw2

−Hnθcλ −Hnθcλ −Hnθp0 −Hnθw0 −Hnθw2

]
= L∗

αn
⊤.

By direct calculation, D2L is written as




−∂2E(π|n)
∂n2

λ
−∂2E(π|n)

∂nλ∂nθ
1 0 − ∂2E(π|n)

∂nλ∂(λmp0)
λm − ∂2E(π|n)

∂nλ∂(θmw0)
θm −∂2E(π|n)

∂nλ∂w2

−∂2E(π|n)
∂nθ∂nλ

−∂2E(π|n)
∂n2

θ
0 1 − ∂2E(π|n)

∂nθ∂(λmp0)
λm − ∂2E(π|n)

∂nθ∂(θmw0)
θm −∂2E(π|n)

∂nθ∂w2

1 0 −∂n∗
λ

∂cλ
−∂n∗

λ

∂cθ
0 0 0

0 1 −∂n∗
θ

∂cλ
−∂n∗

θ

∂cθ
0 0 0

− ∂2E(π|n)
∂nλ∂(λmp0)

λm − ∂2E(π|n)
∂nθ∂(λmp0)

λm 0 0 0 0 0

− ∂2E(π|n)
∂nλ∂(θmw0)

θm − ∂2E(π|n)
∂nθ∂(θmw0)

θm 0 0 0 0 0

−∂2E(π|n)
∂nλ∂w2

−∂2E(π|n)
∂nθ∂w2

0 0 0 0 0




.

The positive semidefiniteness of D2L∗(n∗, α) ensures that all of its principal minors be

nonnegative. In particular, this implies that the following principal minors M ′
2 and M ′′

2 are

nonnegative:

M ′
2 =

�����
−∂2E(π|n)

∂n2
λ

1

1 −∂n∗
λ

∂cλ

����� ≥ 0 =⇒ ∂n∗
λ

∂cλ
≤ 1

∂2E(π|n)
∂n2

λ

, (47)

M ′′
2 =

�����
−∂2E(π|n)

∂n2
θ

1

1 −∂n∗
θ

∂cθ

����� ≥ 0 =⇒ ∂n∗
θ

∂cθ
≤ 1

∂2E(π|n)
∂n2

θ

< 0

where M ′
2 consists of D2L’s first and third rows and columns while M ′′

2 consists of its

second and fourth rows and columns. Because π is increasing in λmp0 under Assumption 8,

Corollary 5 in Appendix 2 insists ∂2E(π|n)
∂n2

λ
< 0. Applying this to the above inequalities

establishes parts (vii) and (viii).

Lastly, to show parts (ii), (iii), (ix) and (x), consider the following third principal

mninor M3

M3 =

�������

−∂2E[π|n]
∂n2

λ
1 0

1 −∂n∗
λ

∂cλ
−∂n∗

λ

∂cθ

0 −∂n∗
θ

∂cλ
−∂n∗

θ

∂cθ

�������
,

which consists of D2L’s first, third and fourth rows and columns. The nonnegativity of M3

implies that
∂n∗

θ

∂cθ
≥

[
∂n∗

λ

∂cλ

∂n∗
θ

∂cθ
− ∂n∗

λ

∂cθ

∂n∗
θ

∂cλ

]
∂2E(π|n)

∂n2
λ

.



－ 76－

Rearranging the terms and then applying (47) gives

[
∂n∗

λ

∂cλ

∂n∗
θ

∂cθ
− ∂n∗

λ

∂cθ

∂n∗
θ

∂cλ

]
≥ ∂n∗

θ

∂cθ

1
∂2E(π|n)

∂n2
λ

≥ ∂n∗
θ

∂cθ

∂n∗
λ

∂cλ
.

Together with (44), this proves parts (ix) and (x). Together with (45) and (46), this in

turn establishes parts (ii) and (iii).

Proof of Proposition 6. The second-order sufficient condition for a local (global) max-

imum is that the Hessian of W , D2W , is negative definite in some neighborhood of n∗∗

(for all n ∈ R2
+ respectively). The determinantal test for this condition is that every kth

leading principal minor of |D2W | is positive if k is even, and negative otherwise. (29)-(31)

just restates these requirements.

Proof of Proposition 7. It suffices to show that n∗ ̸= n∗∗. By Propositions 1 and 5,

n∗
λ = n∗∗

λ holds if and only if Hnλ
= Wnλ

holds. From (7) and (27), the latter holds if and

only if

∫ λ

λ

vc(λmp0)
∂f ∗(λm|nλ)

∂nλ

dλm = 0.

Corollary 3 implies that this is the case if and only if vc is constant over p, or
∂vc(·)

∂(λmp0)
= 0,

since vc is nonincreasing in λmp0. However, it is not possible under the stated assumptions,

since together with Roy’s identity ∂vc(·)
∂(λmp0)

= 0 implies y∗ = 0 but Assumption 8 ensures y∗ >

0. The other claim, n∗
θ ̸= n∗∗

θ , can be established analogously.

Proof of Proposition 8. Under the stated conditions, n∗ and n∗∗ exist. We show n∗
λm

>

n∗∗
λm

. The proof of the other claim is similar. First, given Assumption 8, π increases in λmp0.

So, Corollary 5 implies that Hnλ
decreases in nλ. Given (29), Wnλ

decreases in nλ as well.

From Corollary 1 together with the above proof of Proposition 7, we have

∫ λ

λ

vc(λmp0)
∂f ∗(λm|nλ)

∂nλ

dλm > 0.

So, Hnλ
> Wnλ holds for any nλ. Both Hnλ

and Wnλ
are monotonic, and hence invertible.

Hence, H−1
nλ

(0) = n∗
λ > n∗∗

λ = W−1
nλ

(0) follows.
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Appendix 2

In this appendix, we present six corollaries of Theorem 1 and 2 by Manning and Morgan

(1982), all of which are repeatedly referred to in the proof of the propositions as well as in

the text.

Let f ∗ be the pdf of the maximum of a sample of nx independent and identically

distributed observations from a population with pdf f and cdf F . Likewise, denote by g∗ the

pdf of the maximum of a sample of ny independent and identically distributed observations

from a population with pdf g and cdf G. Let us assume that both of the support of f and g

are reals R. Lastly, h is a differentiable function.

First, we replicate Theorem 1 and 2 by Manning and Morgan (1982) for reference.

Theorem 1. ∫

R
h(y)

∂g∗(y|ny)

∂ny

dy ⋛ 0, as
dh

dy
⋚ 0, for all y∈ R. (48)

Theorem 2. ∫

R
h(y)

∂2g∗(y|ny)

∂ny
2

dy ⋛ 0, as
dh

dy
⋛ 0, for all y∈ R.

The next two corollaries are maximum counterpart of these theorems.

Corollary 1. ∫

R
h(x)

∂f ∗(x|nx)

∂nx

dx ⋛ 0, as
dh

dx
⋛ 0, for all x∈ R.

Proof. From (3),
∂f ∗(x|nx)

∂nx

= [1 + nx lnF (x)]F (x)nx−1f(x). (49)

There exists a unique x = r such that

1 + nx lnF (x) ⋚ 0 as x ⋚ r,

since f is a pdf. Thus,
∂f∗(x|nx)

∂nx

⋚ 0 as x ⋚ r.

Suppose that dh
dx

> 0 for all x ∈ R. Then h(x) ⋚ h(r) when x ⋚ r, and

∫

R
h(x)

∂f ∗(x|nx)

∂nx

dx =

∫ r

h(x)
∂f ∗(x|nx)

∂nx

dx +

∫

r

h(x)
∂f ∗(x|nx)

∂nx

dx

>

∫ r

h(r)
∂f ∗(x|nx)

∂nx

dx +

∫

r

h(r, y)
∂f ∗(x|nx)

∂nx

dx

= h(r)

∫

R

∂f ∗(x|nx)

∂nx

dx = 0

since f ∗ is a pdf. A similar argument applies if dh
dx

≤ 0.
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Corollary 2.

∫

R2

h(x)
∂2f ∗(x|nx)

∂nx
2

dx ⋛ 0, as
dh

dx
⋚ 0, for all x∈ R.

Proof. From (49),

∂2f ∗(x|nx)

∂nx
2

= [2 + nx lnF (x)]F (x)nx−1 lnF (x)f(x).

Since f is a pdf, there is a unique x = r′ such that

2 + nx lnF (x) ⋛ 0 as x ⋚ r′.

Thus,
∂f ∗(x|nx)

∂nx

⋚ 0 as x ⋚ r′.

Proceeding as in Corollary 1 completes the proof.

From the above four theorems and corollaries, the next statements are immediate.

Corollary 3.

∫∫

R2

h(x, y)
∂f ∗(x|nx)

∂nx

g∗(y|ny) dx dy ⋛ 0, as
∂h

∂x
⋛ 0, for all (x, y)∈ R2.

Proof. Corollary 1 implies that, fixing y∈ R,
∫

R
h(x, y)

∂f ∗(y|nx

∂nx

dx ⋛ 0, as
∂h

∂x
⋛ 0, for all (x, y)∈ R2.

Integrate over y, resulting the claim.

Corollary 4.

∫∫

R2

h(x, y)f ∗(x|nx)
∂g∗(y|ny)

∂ny

dx dy ⋛ 0, as
∂h

∂y
⋚ 0, for all (x, y)∈ R2.

Proof. Theorem 1 implies that, fixing x ∈ R,
∫

R
h(x, y)

∂g∗(y|ny)

∂ny

dy ⋛ 0, as
∂h

∂y
⋚ 0, for all y∈ R.

Integrate over x, resulting the claim.

Corollary 5.

∫∫

R2

h(x, y)
∂2f ∗(x|nx)

∂nx
2

g∗(y|ny) dx dy ⋛ 0, as
∂h

∂x
⋚ 0, for all (x, y)∈ R2.
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Proof. Corollary 2 implies that, fixing y∈ R,
∫

R
h(x, y)

∂2f ∗(y|nx

∂nx
2

dx ⋛ 0, as
∂h

∂x
⋚ 0, for all (x, y)∈ R2.

Integrate over y, resulting the claim.

Corollary 6.
∫∫

R2

h(x, y)f ∗(x|nx)
∂2g∗(y|ny)

∂ny
2

dx dy ⋛ 0, as
∂h

∂y
⋛ 0, for all (x, y)∈ R2.

Proof. Theorem 2 implies that, fixing x ∈ R
∫

R
h(x, y)

∂2g∗(y|ny)

∂ny
2

dy ⋛ 0, as
∂h

∂y
⋛ 0, for all y∈ R.

Integrate over x, resulting the claim.
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