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Abstract
Bonner’s solution, one of the static two-body solutions of Einstein-Maxwell

equations, is investigated in comparison with the N = 2 case of the axisym-
metric N -Reissner-Nordström solution. The physical masses and electric
charges of each body are calculated by using the Komar integrals. The re-
sults obtained from these calculations differ from those given by Bonner.
The equilibrium condition is also studied, which shows that Bonner’s solu-
tion reduces to the one-body type of Majumder-Papapetreu solution under
the equilibrium condition, while the case of the Reisser-Nordström solution
to the two-body type.

要旨
アインシュタイン・マクスウェル方程式の静的２体解のひとつであるW.B.

ボナーによる解を、軸対称N 体ライスナー・ノルドシュトルム解のN = 2
の場合との比較で調べる。それぞれの重力源の物理量である電荷と質量をコ
マ―積分により求めるが、ボナーによる結果とは異なる。両方の解において
２体の平衡条件を課した場合、ライスナー・ノルドシュトルム解が２体のマ
ジャンダ―・パパペトロウ解に帰着するのに対して、ボナー解は１体の解に
帰着することが分かる。
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1 Introduction

Bonner’s solution [1], which was presented by W.B. Bonner in 1979, is
an exact static and axisymmetric solution of Einstein-Maxwell equations.
The solution is not of Weyl class, where the gravitational and electrostatic
potentials are not functionally related. Bonner interpreted this solution as
describing the gravitational and electric fields created by a mass with an elec-
tric charge and dipole moment. Since then, the solution has been reexamined
by other workers [2, 3], and they revealed that Bonner’s solution describes
the fields by two charged masses. In addition, it is shown that the solution
has some strange properties that are unknown in classical electrostatics [4].

The two-body system, such as the fields described by Bonner’s solu-
tion, attracts interest because we can consider the static equilibrium where
Coulomb force in electromagnetic field balances gravitational one. Many
works [3, 5–14] have been conducted to study the equilibrium condition. In
order to elucidate the equilibrium condition imposed on the masses and elec-
tric charges of each body, we need to define the individual masses and charges
in two-body system. Therefore, the definitions of mass and charge are im-
portant in studying the equilibrium condition.

The present author and T.Koikawa [8] presented an exact static and ax-
isymmetric solution of Einstein-Maxwell equations by applying the inverse
scattering method that is one of the soliton techniques to solve gravitational
field equations. The solution, which is of Weyl class, describes n charged
masses located along the symmetry axis; therefore we called it the axisym-
metric N -Reissner-Nordström solution. We defined the masses and charges
of each body and studied the condition that should be imposed on them for
static equilibrium.

In this paper, we investigate Bonner’s solution in comparison with the
N = 2 case of the axisymmetric N -Reissner-Nordström solution. In Bon-
ner’s solution, we define the masses and electric charges of each body by
means of the Komar integrals [15]. The obtained quantities are not the same
as those in the original definitions of Bonner [16]. The equilibrium condi-
tion that the symmetry axis between two bodies should be locally Euclidean
leads to the result that both the mass and charge of one body disappear.
The solution becomes of Weyl class and reduces to the one-body type of
Majumder-Papapetrou solution [17, 18]. To compare Bonner’s solution with
the N = 2 case of the axisymmetric N -Reissner-Nordström solution, which
also describes the fields by two charged masses, we define the masses and
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charges of each body and consider the equilibrium condition in this case.
The solution becomes the two-body type of Majumdar-Papapetrou solution
in equilibrium.

In section 2, firstly, we show that Bonner’s solution can be derived from
the 2-soliton solution that is obtained by applying the inverse scattering
method to Einstein-Maxwell equations. Secondly, we study the structure of
solution. Finally, we consider the definitions of charge and mass and the
equilibrium condition. In section 3, we present the N = 2 case of the ax-
isymmetric N -Reissner-Nordström solution. The structures of solution, the
definitions of charge and mass, and the equilibrium condition are compared
with those in Bonner’s solution. We also present the singularity structure of
the solution that satisfies the equilibrium condition. In section 4, we give a
brief discussion on the definitions of individual masses and charges.

2 Bonner’s solution

2.1 Derivation of solution

Bonner’s solution is expressed in the prolate spheroidal coordinates (x, y)
as

ds2 = σ2U2V 2

[
(UV − BV − CU)2

(x2 − y2)3

(
dx2

x2 − 1
+

dy2

1− y2

)

+
(x2 − 1)(1− y2)

(UV − BV − CU)2
dϕ2

]
− (UV − BV − CU)2

U2V 2
dt2, (2.1.1)

where

U = B + Ay − x, V = C + Ay + x. (2.1.2)

In these equations, A, B, C and σ are constants satisfying the relation

A2 = BC + 1. (2.1.3)

In order to obtain this Bonner’s solution by applying the inverse scattering
method to Einstein-Maxwell equations, we first consider the metric in the
canonical cylindrical coordinates (ρ, z)

ds2 = f−1[Q(dρ2 + dz2) + ρ2dϕ2]− fdt2, (2.1.4)
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where f and Q are functions of ρ and z. In the metric (2.1.4), the source-free
Einstein-Maxwell equations

Rµ
ν = 2

(
F µσFνσ −

1

4
δµνF

αβFαβ

)
, (2.1.5)

F µν
;µ = 0, (2.1.6)

Fµν = Aν ,µ −Aµ,ν (2.1.7)

are written as

(ln f),ρρ +ρ−1(ln f),ρ +(ln f),zz = 2f−1(χ,2ρ +χ,2z ), (2.1.8)

(lnQ),ρ =
ρ

2
[(ln f),2ρ −(ln f),2z ]− 2ρf−1(χ,2ρ −χ,2z ), (2.1.9)

(lnQ),z = ρ(ln f),ρ (ln f),z −4ρf−1χ,ρ χ,z , (2.1.10)

χ,ρρ +ρ−1χ,ρ +χ,zz = χ,ρ (ln f),ρ +χ,z (ln f),z , (2.1.11)

where χ = −A0. We next introduce a function ψ by
{

ψ,z = −ρf−1χ,ρ
ψ,ρ = ρf−1χ,z ,

(2.1.12)

and rewrite Eqs.(2.1.8)-(2.1.11) as

(ln f),ρρ +ρ−1(ln f),ρ +(ln f),zz = 2ρ−2f(ψ,2ρ +ψ,2z ), (2.1.13)

(lnQ),ρ =
ρ

2
[(ln f),2ρ −(ln f),2z ] + 2ρ−1f(ψ,2ρ −ψ,2z ), (2.1.14)

(lnQ),z = ρ(ln f),ρ (ln f),z +4ρ−1fψ,ρ ψ,z , (2.1.15)

ψ,ρρ −ρ−1ψ,ρ +ψ,zz = −[ψ,ρ (ln f),ρ +ψ,z (ln f),z ]. (2.1.16)

We further introduce the 2 × 2 matrices h, S and T defined by

h =

(
h00 h01

h10 h11

)
=

(
f 1/2 f 1/2ψ
f 1/2ψ f−1/2ρ2 + f 1/2ψ2

)
, (2.1.17)

S = ρh,ρ h
−1, T = ρh,z h

−1. (2.1.18)

Using these matrices, we find that Eqs.(2.1.13)-(2.1.16) reduce to

(ρh,ρ h
−1),ρ +(ρh,z h

−1),z = 0, (2.1.19)

(lnQ),ρ = 4(ln h00),ρ −
4

ρ
+

1

ρ
Tr(S2 − T 2), (2.1.20)

(lnQ),z = 4(ln h00),z +
2

ρ
Tr(ST ). (2.1.21)
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We now apply the inverse scattering method to solve Eqs.(2.1.19)-(2.1.21)
with the condition

det h = ρ2. (2.1.22)

Assuming the seed matrix h0 = diag(1, ρ2) that corresponds to the flat metric
and no electromagnetic field, we find that the one-soliton solution satisfying
the condition (2.1.22) is unphysical because f < 0. The two-soliton solution
is given by

h00 =
µ1µ2[ρ

2(µ2 − µ1)
2(p1p2 − q1q2)

2 + (ρ2 + µ1µ2)
2(p1q2 − p2q1)

2]

(µ2 − µ1)2(p1p2ρ2 + q1q2µ1µ2)2 − (ρ2 + µ1µ2)2(p1q2µ2 − p2q1µ1)2
,

(2.1.23)

h01 = −(µ2 − µ1)(ρ
2 + µ1µ2)

× p2q2(µ
2
2 + ρ2)(p21ρ

2 + q21µ
2
1)− p1q1(µ

2
1 + ρ2)(p22ρ

2 + q22µ
2
2)

(µ2 − µ1)2(p1p2ρ2 + q1q2µ1µ2)2 − (ρ2 + µ1µ2)2(p1q2µ2 − p2q1µ1)2
,

(2.1.24)

where
{

µ1 = w1 − z +
√
(w1 − z)2 + ρ2

µ2 = w2 − z −
√
(w2 − z)2 + ρ2,

(2.1.25)

and p1, p2, q1, q2, w1, w2 are constants. Eqs.(2.1.23) and (2.1.24) lead to the
results

f =

[
µ1µ2[ρ

2(µ2 − µ1)
2(p1p2 − q1q2)

2 + (ρ2 + µ1µ2)
2(p1q2 − p2q1)

2]

(µ2 − µ1)2(p1p2ρ2 + q1q2µ1µ2)2 − (ρ2 + µ1µ2)2(p1q2µ2 − p2q1µ1)2

]2
,

(2.1.26)

ψ = −(µ2 − µ1)(ρ
2 + µ1µ2)

× p2q2(µ
2
2 + ρ2)(p21ρ

2 + q21µ
2
1)− p1q1(µ

2
1 + ρ2)(p22ρ

2 + q22µ
2
2)

µ1µ2[ρ2(µ2 − µ1)2(p1p2 − q1q2)2 + (ρ2 + µ1µ2)2(p1q2 − p2q1)2]
,

(2.1.27)

Bonner’s Solution and Double Reissner-Nordström Solution

－5－



and the integrations of Eqs.(2.1.12), (2.1.20) and (2.1.21) give

χ = (µ2 − µ1)(ρ
2 + µ1µ2)

× p2q2(p
2
1 − q21)µ1(µ

2
2 + ρ2)− p1q1(p

2
2 − q22)µ2(µ

2
1 + ρ2)

(µ2 − µ1)2(p1p2ρ2 + q1q2µ1µ2)2 − (ρ2 + µ1µ2)2(p1q2µ2 − p2q1µ1)2
,

(2.1.28)

Q = C2

[
(p1p2 − q1q2)

2ρ2(µ2 − µ1)
2 + (p1q2 − p2q1)

2(ρ2 + µ1µ2)
2

(µ2
1 + ρ2)(µ2

2 + ρ2)

]4
,

(2.1.29)

where C2 is a constant.
If we introduce the prolate spheroidal coordinates (x, y) defined by

{
ρ = σ

√
(x2 − 1)(1− y2)

z − z0 = σxy,
(2.1.30)

with

σ =
w2 − w1

2
, z0 =

w2 + w1

2
, (2.1.31)

we then find that Eqs.(2.1.26), (2.1.28) and (2.1.29) are written as

f =

[
c22(x

2 − 1) + c24(1− y2)

(c2x+ c1)2 − (c3 + c4y)2

]2
, (2.1.32)

χ =
2(c2c3x− c1c4y)

(c2x+ c1)2 − (c3 + c4y)2
, (2.1.33)

Q = C2

[
c22(x

2 − 1) + c24(1− y2)

x2 − y2

]4
, (2.1.34)

where the constants c1, c2, c3 and c4 are given by



c1 = p1p2 + q1q2
c2 = p1p2 − q1q2
c3 = −(p1q2 + p2q1)
c4 = −(p1q2 − p2q1).

(2.1.35)

In Eq.(2.1.35), we note that the following relation holds:

c21 + c24 = c22 + c23. (2.1.36)
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Furthermore, if we define the relations by

A =
c4
c2
, B =

c3 − c1
c2

, C =
c3 + c1

c2
, (2.1.37)

we then find that Eqs.(2.1.32)-(2.1.34) are rewritten as

f =

(
UV − BV − CU

UV

)2

, (2.1.38)

χ =
CU − BV

UV
, (2.1.39)

Q =

(
UV − BV − CU

x2 − y2

)4

. (2.1.40)

This is Bonner’s solution given by Eqs.(2.1.1)-(2.1.3) with C2 = c−8
2 .

2.2 Structure of solution

Hereafter we set z0 = 0 and study the structure of Bonner’s solution.
We first see the asymptotic behaviors of solution at the spatial infinity√

ρ2 + z2 → ∞:

f ∼ 1− 2m√
ρ2 + z2

+
2m2 + e2

ρ2 + z2
− 2lez

(ρ2 + z2)3/2
, (2.2.1)

χ ∼ e√
ρ2 + z2

− me

ρ2 + z2
+

mlz

(ρ2 + z2)3/2
, (2.2.2)

Q ∼ 1− (m2 − e2)ρ2

(ρ2 + z2)2
, (2.2.3)

where m, e and l are constants given by

m = 2
c1
c2
σ, (2.2.4)

e = 2
c3
c2
σ, (2.2.5)

l = −c4
c2
σ. (2.2.6)

We note that Eq.(2.1.36) gives the relation

m2 − e2 = 4(σ2 − l2), (2.2.7)
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and find that the field described by the solution has a dipole moment.
We next present the behaviors of solution around the symmetry axis

defined by ρ = 0. In the following investigation, we assume that σ > 0 and
l > 0 without loss of generality. Dividing the axis into three regions, we have
i) z > σ region

f =
16(σ2 − z2)2

[(e− 2l)2 − (m+ 2z)2]2
, (2.2.8)

Q = 1, (2.2.9)

χ =
−4(lm+ ez)

(e− 2l)2 − (m+ 2z)2
, (2.2.10)

ii) −σ < z < σ region

f =
16l4(σ2 − z2)2

(m2σ2 − e2σ2 + 4mσ3 + 4σ4 + 4elσz − 4l2z2)2
, (2.2.11)

Q =
l8

σ8
, (2.2.12)

χ =
4σ(eσ2 + lmz)

m2σ2 − e2σ2 + 4mσ3 + 4σ4 + 4elσz − 4l2z2
, (2.2.13)

iii) z < −σ region

f =
16(σ2 − z2)2

[(e+ 2l)2 − (m− 2z)2]2
, (2.2.14)

Q = 1, (2.2.15)

χ =
4(lm+ ez)

(e+ 2l)2 − (m− 2z)2
. (2.2.16)

We finally study the singularity structure of solution in the prolate spheroidal
coordinates (x, y). Bonner’s solution with the constants given by Eqs.(2.2.4)-
(2.2.6) is written in the coordinates (x, y) as

χ =
4(eσx+ lmy)

(2σx+m)2 − (2ly − e)2
, (2.2.17)

f =
16[σ2(x2 − 1) + l2(1− y2)]2

[(2σx+m)2 − (2ly − e)2]2
, (2.2.18)

Q =
[σ2(x2 − 1) + l2(1− y2)]4

σ8(x2 − y2)4
. (2.2.19)
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The curvature invariant RαβγδRαβγδ is given by

RαβγδRαβγδ =
4096σ12(x2 − y2)5

[(m+ 2σx)2 − (e− 2ly)2]8[σ2(x2 − 1) + l2(1− y2)]8

×
(
polynomial of x, y

)
. (2.2.20)

The points (x, y) = (±1,±1) are not singularities unless (m±2σ)2−(e±2l)2 =
0 because

RαβγδRαβγδ =
16384(5l4 − 6l2σ2 + 3σ4)

[(m+ 2σ)2 − (e− 2l)2]4
, at (x, y) = (1, 1) (2.2.21)

RαβγδRαβγδ =
16384(5l4 − 6l2σ2 + 3σ4)

[(m+ 2σ)2 − (e+ 2l)2]4
, at (x, y) = (1,−1) (2.2.22)

RαβγδRαβγδ =
16384(5l4 − 6l2σ2 + 3σ4)

[(m− 2σ)2 − (e− 2l)2]4
, at (x, y) = (−1, 1) (2.2.23)

RαβγδRαβγδ =
16384(5l4 − 6l2σ2 + 3σ4)

[(m− 2σ)2 − (e+ 2l)2]4
. at (x, y) = (−1,−1) (2.2.24)

However, we find that the points (x, y) = (−1,±1) are singularities when
(m, e) = (2σ,±2l). In this case, the curvature invariant at y = ±1 is given
by

RαβγδRαβγδ =
64(5l4 − 12l2σ2 + 12σ4 + 6l2σ2x− 12σ4x+ 3σ4x2)

σ8(x+ 1)8
. (2.2.25)

We also find that the points (x, y) = (1,±1) are singularities when (m, e) =
(−2σ,±2l). In this case, the curvature invariant at y = ±1 is given by

RαβγδRαβγδ =
64(5l4 − 12l2σ2 + 12σ4 − 6l2σ2x+ 12σ4x+ 3σ4x2)

σ8(x− 1)8
. (2.2.26)

In the more general case, singularities exist at the points where the following
relations hold:

y = −σ

l
x− m− e

2l
, (2.2.27)

y =
σ

l
x+

m+ e

2l
. (2.2.28)

In the case σ > l, if

m± e > −2(σ − l), (2.2.29)
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there are no singularities in the region x > 1 but singularities in the region
x < −1, while if

m± e < 2(σ − l), (2.2.30)

there are no singularities in the region x < −1 but singularities in the region
x > 1. In the case σ < l, there are singularities in both regions.

2.3 Definitions of mass and charge

From the asymptotic behaviors (2.2.1) and (2.2.2) at the spatial infinity,
we find that Bonner’s solution describes the field created by a total mass m
and electric charge e. In order to see where the individual masses and charges
exist, let us calculate the Komar integrals over isolated three dimensional
surfaces. The Komar charge is defined by the flux integral over a three
dimensional surface Si as

ei =
1

4π

∮

Si

F 0l
√
−g dsl, (2.3.1)

where dsl is the surface element of Si. In the metric (2.1.4), we can write the
integral (2.3.1) explicitly as

ei = − 1

4π

∮

Si

(ρf−1χ,ρ dsρ + ρf−1χ,z dsz), (2.3.2)

and using the relation (2.1.12), we have

ei =
1

4π

∮

Si

(ψ,z dsρ − ψ,ρ dsz). (2.3.3)

If we consider Si as a cylinder specified by a lower base at z = zd, upper base
at z = zu and side at ρ = ρs, we can calculate the integral (2.3.3) as

ei =
1

2
[ψ(0, zu)− ψ(0, zd)]. (2.3.4)

The Komar mass is defined by the surface integral of the covariant derivative
of the time-like Killing vector ξµ over Si. Taking account of the contribution
of electrostatic field to the surface integral, we have [19]

mi =
1

4π

∮

Si

(ξ0;l + χF 0l)
√
−g dsl. (2.3.5)
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In the metric (2.1.4), the integral (2.3.5) is written as

mi =
1

8π

∮

Si

[ρf−1(f − χ2),ρ dsρ + ρf−1(f − χ2),z dsz]. (2.3.6)

Substituting the solutions (2.1.26) and (2.1.28) into the integral (2.3.6) and
performing the integration, we obtain the expression

mi =
1

8π

∮

Sa

(K,z dsρ −K,ρ dsz), (2.3.7)

where K is the function of ρ and z given by

K = (µ2 − µ1)(ρ
2 + µ1µ2)

× ρ2(µ2
2 − µ2

1)(p
2
1p

2
2 − q21q

2
2) + (ρ4 − µ2

1µ
2
2)(p

2
1q

2
2 − p22q

2
1)

µ1µ2[ρ2(µ2 − µ1)2(p1p2 − q1q2)2 + (ρ2 + µ1µ2)2(p1q2 − p2q1)2]
. (2.3.8)

If we consider the surface Si as the same cylinder as mentioned above, we
have

mi =
1

4
[K(0, zu)−K(0, zd)]. (2.3.9)

When we set (zu, zd) = (+∞,−∞) in the definitions (2.3.4) and (2.3.9),
we have etotal = e and mtotal = m, respectively, which coincide with the
definitions given by the asymptotic behaviors (2.2.1) and (2.2.2) of solution.
Setting (zu, zd) = (+∞,+σ+0), (+σ−0,−σ+0) and (−σ−0,−∞), we have
ei = 0 andmi = 0, which show that no charge and mass exist in these regions.
Finally, setting (zu, zd) = (+σ+0,+σ−0) and (zu, zd) = (−σ+0,−σ−0), we
conclude that the charge and mass exist at the points z = +σ and z = −σ on
the axis defined by ρ = 0. The definition (2.3.4) gives the charges at z = +σ
and z = −σ as

e+σ =
e

2
+

m2 − e2 + 2mσ

4l
, (2.3.10)

e−σ =
e

2
− m2 − e2 + 2mσ

4l
, (2.3.11)

respectively. The definition (2.3.9) gives the masses at z = +σ and z = −σ
as

m+σ =
m

2
+

eσ

2l
, (2.3.12)

m−σ =
m

2
− eσ

2l
, (2.3.13)
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respectively. We note here that the relations etotal = e+σ + e−σ and mtotal =
m+σ +m−σ hold.

2.4 Equilibrium condition

As is seen in the preceding subsections, Bonner’s solution describes the
gravitational and electric fields created by two charged masses located at the
points z = +σ and z = −σ on the symmetry axis. In the general case, there
exists a strut between these points. In the case where there is no strut, two
charged masses are in a static equilibrium in which Coulomb force precisely
balances gravitational force. As the strut causes a conical singularity on the
axis, let us calculate the quantity P0 defined by

P 2
0 = lim

ρ→0

(
gϕϕ
ρ2gρρ

)
= lim

ρ→0
Q−1. (2.4.1)

When P0 = 1 the axis is spatially Euclidean and P0 ̸= 1 expresses a deviation
from the spatially Euclidean metric.

From the behaviors of solution around the axis given in Eqs.(2.2.8)-
(2.2.16), we find that the axis is spatially Euclidean and there is no conical
singularity in the regions z > +σ and z < −σ. In the region −σ < z < +σ,
the axis is spatially Euclidean and there is no strut if the relation l = σ holds.
In this case, the equilibrium realizes in Bonner’s solution. If we set σ = l in
the relation (2.2.7), we have m = ±e. Therefore, in the equilibrium case, the
charges and masses of each body become

e+σ = e, e−σ = 0, m+σ = m, m−σ = 0, (2.4.2)

or

e+σ = 0, e−σ = e, m+σ = 0, m−σ = m. (2.4.3)

We find that one electric charge and mass disappear in the equilibrium case.
In this case, the solution reduces to

χ =
(ex+my)

σ(x2 − y2) +mx+ ey
, (2.4.4)

f =
σ2(x2 − y2)2

[σ(x2 − y2) +mx+ ey]2
, (2.4.5)

Q = 1. (2.4.6)
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Taking account of the relation m = ±e, we have

χ =
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, (2.4.7)

f =
σ2(x∓ y)2

[σ(x∓ y) +m]2
. (2.4.8)

We find that f = (1 ∓ χ)2 and the solution becomes the one-body type of
Majumdar-Papapetrou solution. We can also find that the solution in this
case is reduced to the extremal Reissner-Nordström solution.

3 The double Reissner-Nordström solution

3.1 Derivation of solution

The Reissner-Nordström solution is obtain by assuming a relationship
f(χ) in Einstein-Maxwell equations (2.1.8)-(2.1.11). This assumption leads
to the relation

f = 1− 2cχ+ χ2, (3.1.1)

and reduces Eqs.(2.1.8)-(2.1.11) to
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(lnQ),ρ = 2ρf−2(c2 − 1)(χ,2ρ −χ,2z ), (3.1.3)

(lnQ),z = 4ρf−2(c2 − 1)χ,ρ χ,z , (3.1.4)

where c is an arbitrary constant. Introducing a function R(ρ, z) with con-
stants b and a = bc by
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b
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, (3.1.5)

we write the function f as

f =
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, (3.1.6)
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where d2 = a2 − b2. Further introducing a function f̄ by

R = d
1 + f̄

1− f̄
, (3.1.8)

we find that this relation transforms Eq.(3.1.7) into a linear differential equa-
tion

(ln f̄),ρρ +ρ−1(ln f̄),ρ +(ln f̄),zz = 0, (3.1.9)

and Eq.(3.1.3) and (3.1.4) into

(lnQ),ρ =
ρ

2
[(ln f̄),2ρ −(ln f̄),2z ], (3.1.10)

(lnQ),z = ρ(ln f̄),ρ (ln f̄),z . (3.1.11)

The expressions (3.1.9)-(3.1.11) are the same as those for the vacuum Ein-
stein equation in the metric (2.1.4) with f̄ instead of f . Applying the inverse
scattering method to solve Eqs. (3.1.9)-(3.1.11), we have the 2-soliton solu-
tion given by

f̄ = −µ1µ2

ρ2
, (3.1.12)

Q =
ρ2(µ1 − µ2)

2

(µ2
1 + ρ2)(µ2

2 + ρ2)
, (3.1.13)

with
{

µ1 = z0 − z − d+
√
(z0 − z − d)2 + ρ2,

µ2 = z0 − z + d−
√
(z0 − z + d)2 + ρ2,

(3.1.14)

where z0 is a constant. In the prolate spheroidal coordinates (x, y) defined
by

{
ρ = d

√
(x2 − 1)(1− y2),

z − z0 = dxy,
(3.1.15)

we have
{

µ1 = d(x− 1)(1− y),
µ2 = −d(x− 1)(1 + y),

(3.1.16)
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and

χ =
b

dx+ a
, (3.1.17)

f =
d2(x2 − 1)

(dx+ a)2
, (3.1.18)

Q =
x2 − 1

x2 − y2
. (3.1.19)

These show that the 2-soliton solution for f̄ gives the Reissner-Nordström
solution.

The 4-soliton solution is given by

f̄ =
µ1µ2µ3µ4

ρ4
, (3.1.20)

Q =
ρ8[(µ1 − µ2)(µ1 − µ3)(µ1 − µ4)(µ2 − µ3)(µ2 − µ4)(µ3 − µ4)]

2

(µ2
1 + ρ2)(µ2

2 + ρ2)(µ2
3 + ρ2)(µ2

4 + ρ2)(µ1µ2µ3µ4)2C4

,

(3.1.21)

with



µ1 = z1 − z − d1 +
√
(z1 − z − d1)2 + ρ2,

µ2 = z1 − z + d1 −
√
(z1 − z + d1)2 + ρ2,

µ3 = z2 − z − d2 +
√
(z2 − z − d2)2 + ρ2,

µ4 = z2 − z + d2 −
√
(z2 − z + d2)2 + ρ2,

(3.1.22)

and

C4 = 16[(z1 − z2)
2 − (d1 − d2)

2]2, (3.1.23)

where z1, z2, d1, d2 are constants. For the quantities f and χ, we have

f =
4d2ρ4µ1µ2µ3µ4

[(d+ a)ρ4 + (d− a)µ1µ2µ3µ4)]2
, (3.1.24)

χ =
b(ρ4 − µ1µ2µ3µ4)

(d+ a)ρ4 + (d− a)µ1µ2µ3µ4

. (3.1.25)

The 4-soliton solution obtained here is the N = 2 case of the axisymmetric N -
Reissner-Normström solution and the so-called double Reissner-Nordström
solution.
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3.2 Structure of solution

In order to see the structure of the double Reissner-Nordström solution
obtained in the preceding subsection, we first study the asymptotic behaviors
of solution at the spatial infinity. In the spatial infinity

√
ρ2 + z2 → ∞, we

have

f ∼ 1− 2a(d1 + d2)

d
√
ρ2 + z2

+
(2a2 + b2)(d1 + d2)

2

d2(ρ2 + z2)
− 2a(d1z1 + d2z2)z

d(ρ2 + z2)3/2
,

(3.2.1)

χ ∼ b(d1 + d2)

d
√
ρ2 + z2

− ab(d1 + d2)
2

d2(ρ2 + z2)
+

b(d1z1 + d2z2)z

d(ρ2 + z2)3/2
, (3.2.2)

Q ∼ 1− (d1 + d2)
2ρ2

(ρ2 + z2)2
, (3.2.3)

Hereafter we assume that z2 + d2 > z2 − d2 > z1 + d1 > z1 − d1 without
loss of generality. The behaviors of solution around the axis defined by ρ = 0
are obtained in the following regions as
i) z > z2 + d2 region

f ∼ ρ0, Q = 1, χ ∼ ρ0, (3.2.4)

ii) z2 + d2 > z > z2 − d2 region

f ∼ ρ2, Q ∼ ρ2, χ =
b

d+ a
, (3.2.5)

iii) z2 − d2 > z > z1 + d1 region

f ∼ ρ0, Q =

[
(z1 − z2)

2 − (d1 + d2)
2

(z1 − z2)2 − (d1 − d2)2

]2
, χ ∼ ρ0, (3.2.6)

iv) z1 + d1 > z > z1 − d1 region

f ∼ ρ2, Q ∼ ρ2, χ =
b

d+ a
, (3.2.7)

v) z1 − d1 > z region

f ∼ ρ0, Q = 1, χ ∼ ρ0. (3.2.8)

The behaviors in the regions ii) and iv) are the same as those on the horizon
in the Reissner-Nordström solution. Therefore, we conclude that there are
two Reissner-Nordström black holes in these regions. The behaviors in the
regions i) and v) show that the axis in these regions is spatially Euclidean.
The behavior in the region iii) shows that there is a strut in this region.
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The behavior in the region iii) shows that there is a strut in this region.
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3.3 Definitions of charge and mass

Let us consider the charges and masses of each Reissner-Nordström black
hole. The charges are defined by Eqs.(2.3.1) and (2.3.2), and in this case the
integral in Eq.(2.3.2) becomes

ei =
b

8πd

∮

Si

[ρ(ln f̄),ρ dsρ + ρ(ln f̄),z dsz]. (3.3.1)

The integration of Eq.(3.3.1) gives the expression

ei =
b

8πd

∮

Si

(H,z dsρ +H,ρ dsz), (3.3.2)

where H is the function of ρ and z given by

H = µ1 + µ2 + µ3 + µ4 + 4z. (3.3.3)

If we consider the surface Si as the same cylinder as in the subsection 2.3,
we have

ei =
b

4d
[H(0, zu)−H(0, zd)]. (3.3.4)

As for the masses, the definitions (2.3.5) and (2.3.6) are written as

mi =
a

8πd

∮

Si

[ρ(ln f̄),ρ dsρ + ρ(ln f̄),z dsz], (3.3.5)

which gives the expression

mi =
a

4d
[H(0, zu)−H(0, zd)]. (3.3.6)

When we set (zu, zd) = (+∞,−∞) in the definitions (3.3.4) and (3.3.6),
we have

etotal =
b(d1 + d2)

d
, mtotal =

a(d1 + d2)

d
, (3.3.7)

respectively, which coincide with the definitions given by the asymptotic
behaviors (3.2.1) and (3.2.2). Setting (zu, zd) = (+∞, z2+d2), (z2−d2, z1+d1)
and (z1 − d1,−∞), we have ei = 0 and mi = 0, which show that no charge
and mass exist in these regions. Finally, setting (zu, zd) = (z2 + d2, z2 − d2)
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and (zu, zd) = (z1+d1, z1−d1), we have the charges and masses of each black
hole. For the lower and upper black holes, the definition (3.3.4) gives their
charges e1 and e2 as

e1 =
bd1
d

, e2 =
bd2
d

, (3.3.8)

respectively, and the definition (3.3.6) gives their masses m1 and m2 as

m1 =
ad1
d

, m2 =
ad2
d

, (3.3.9)

respectively. We note here that the relations

etotal = e1 + e2, mtotal = m1 +m2. (3.3.10)

hold also in this case.

3.4 Equilibrium condition

The behavior of solution in the region iii) given in the subsection 3.2
shows that there exists a strut between two Reissner-Nordström black holes
in general. The quantity P0 defined by Eq.(2.4.1) becomes

P 2
0 =

[
(z2 − z1)

2 − (d2 − d1)
2

(z2 − z1)2 − (d2 + d1)2

]2
. (3.4.1)

Let us consider the equilibrium condition in this case. Imposing the condition
P 2
0 = 1 and taking account of the assumption z2 − d2 > z1 + d1, we have

d1d2 = 0. (3.4.2)

Because m1m2 ̸= 0, Eq.(3.4.2) leads to

d = 0 or a = ±b. (3.4.3)

From this and the relation m1/e1 = m2/e2 = a/b, we find that the conditions
on each mass and charge are given by

m1 = ±e1, m2 = ±e2. (3.4.4)
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Conversely, when the conditions (3.4.4) hold, we have d1 = d2 = d = 0 and
P 2
0 = 1. We find that under the conditions (3.4.4) there is no strut and the

solution describes two Reissner-Nordström black holes in a static equilibrium.
In the equilibrium, by taking the limit d1, d2 → 0 in the solutions (3.1.24)

and (3.1.25), we have

f =

(
1 +

m1

r1
+

m2

r2

)−2

, (3.4.5)

χ =
b

a

(
m1

r1
+

m2

r2

)(
1 +

m1

r1
+

m2

r2

)−1

, (3.4.6)

where r1 =
√

ρ2 + (z − z1)2 and r2 =
√

ρ2 + (z − z2)2. This is known as the
two-body type of Majumdar-Papapetrou solution. In the prolate spheroidal
coordinates (x, y) defined by




ρ =
z2 − z1

2

√
(x2 − 1)(1− y2),

z =
z2 + z1

2
+

z2 − z1
2

xy,

(3.4.7)

we have

r1 =
(z2 − z1)(x− y)

2
, (3.4.8)

r2 =
(z2 − z1)(x+ y)

2
, (3.4.9)

and

χ =
2b[(m1 +m2)x+ (m1 −m2)y]

a[(z2 − z1)(x2 − y2) + 2(m1 +m2)x+ 2(m1 −m2)y]
, (3.4.10)

f =
(z2 − z1)

2(x2 − y2)2

[(z2 − z1)(x2 − y2) + 2(m1 +m2)x+ 2(m1 −m2)y]2
, (3.4.11)

Q = 1. (3.4.12)

This solution has event horizons at (x, y) = (1,±1). The curvature invariant
of this solution is given by

RαβγδRαβγδ =
211

[(z2 − z1)(x2 − y2) + 2(m1 +m2)x+ 2(m1 −m2)y]8

×
(
polynomial of x, y

)
. (3.4.13)
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There are singularities at the points where the coordinates (x, y) satisfy the
relation

(z2 − z1)(x
2 − y2) + 2(m1 +m2)x+ 2(m1 −m2)y = 0. (3.4.14)

We find that these points do not exist in the region x > 1 and exist inside
the event horizons specified by r1 = 0 and r2 = 0. This is a very interesting
two-body type of black hole solution, which was studied in detail in the paper
by Hartle and Hawking [20].

4 Discussion

In this paper, we use the Komar integrals in order to define the charges
and masses of each body. However, Bonner argues that it ‘seems not to be
allowable’ to use the integrals because the surfaces Si introduced in subsec-
tions 2.3 and 3.3 contain the points at which they meets the conical sin-
gularities [16]. In fact, the definitions of the charges and masses given in
subsection 2.3 differ from those by Bonner. Bonner defines them from the
asymptotic behaviors at the spatial infinity r−σ =

√
ρ2 + (z + σ)2 → ∞ and

r+σ =
√

ρ2 + (z − σ)2 → ∞ as

χ ∼ e
(B)
+σ

r+σ

+
e
(B)
−σ

r−σ

,

f ∼ 1− 2m
(B)
+σ

r+σ

− 2m
(B)
−σ

r−σ

.

In terms of the constants introduced in subsection 2.2, the results are given
by

e
(B)
+σ =

e

2
+

lm

2σ
,

e
(B)
−σ =

e

2
− lm

2σ
,

m
(B)
+σ =

m

2
+

le

2σ
,

m
(B)
−σ =

m

2
− le

2σ
.
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On the other hand, in the double Reissner-Nordström solution, we find that
the asymptotic behaviors at the spatial infinity r1 =

√
ρ2 + (z − z1)2 → ∞

and r2 =
√

ρ2 + (z − z2)2 → ∞ are given by

χ ∼ e1
r1

+
e2
r2
,

f ∼ 1− 2m1

r1
− 2m2

r2
,

where e1, e2, m1 and m2 are defined in Eqs.(3.3.8) and (3.3.9). These behav-
iors show that the charges and masses defined by the asymptotic behaviors
of solution coincide with those by the Komar integrals. As the surfaces Si

used in the case of the double Reissner-Norström solution also contain the
conical singularity, it is possible that the conical singularity does not cause
the differences in the definitions of charges and masses. Further investigation
on this problem should be studied in future.
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