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Abstract

Bonner’s solution, one of the static two-body solutions of Einstein-Maxwell
equations, is investigated in comparison with the N = 2 case of the axisym-
metric N-Reissner-Nordstrom solution. The physical masses and electric
charges of each body are calculated by using the Komar integrals. The re-
sults obtained from these calculations differ from those given by Bonner.
The equilibrium condition is also studied, which shows that Bonner’s solu-
tion reduces to the one-body type of Majumder-Papapetreu solution under
the equilibrium condition, while the case of the Reisser-Nordstrom solution
to the two-body type.
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1 Introduction

Bonner’s solution [1], which was presented by W.B. Bonner in 1979, is
an exact static and axisymmetric solution of Einstein-Maxwell equations.
The solution is not of Weyl class, where the gravitational and electrostatic
potentials are not functionally related. Bonner interpreted this solution as
describing the gravitational and electric fields created by a mass with an elec-
tric charge and dipole moment. Since then, the solution has been reexamined
by other workers [2,3], and they revealed that Bonner’s solution describes
the fields by two charged masses. In addition, it is shown that the solution
has some strange properties that are unknown in classical electrostatics [4].

The two-body system, such as the fields described by Bonner’s solu-
tion, attracts interest because we can consider the static equilibrium where
Coulomb force in electromagnetic field balances gravitational one. Many
works [3,5-14] have been conducted to study the equilibrium condition. In
order to elucidate the equilibrium condition imposed on the masses and elec-
tric charges of each body, we need to define the individual masses and charges
in two-body system. Therefore, the definitions of mass and charge are im-
portant in studying the equilibrium condition.

The present author and T.Koikawa [8] presented an exact static and ax-
isymmetric solution of Einstein-Maxwell equations by applying the inverse
scattering method that is one of the soliton techniques to solve gravitational
field equations. The solution, which is of Weyl class, describes n charged
masses located along the symmetry axis; therefore we called it the axisym-
metric N-Reissner-Nordstrom solution. We defined the masses and charges
of each body and studied the condition that should be imposed on them for
static equilibrium.

In this paper, we investigate Bonner’s solution in comparison with the
N = 2 case of the axisymmetric N-Reissner-Nordstrom solution. In Bon-
ner’s solution, we define the masses and electric charges of each body by
means of the Komar integrals [15]. The obtained quantities are not the same
as those in the original definitions of Bonner [16]. The equilibrium condi-
tion that the symmetry axis between two bodies should be locally Euclidean
leads to the result that both the mass and charge of one body disappear.
The solution becomes of Weyl class and reduces to the one-body type of
Majumder-Papapetrou solution [17,18]. To compare Bonner’s solution with
the N = 2 case of the axisymmetric N-Reissner-Nordstrém solution, which
also describes the fields by two charged masses, we define the masses and
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charges of each body and consider the equilibrium condition in this case.
The solution becomes the two-body type of Majumdar-Papapetrou solution
in equilibrium.

In section 2, firstly, we show that Bonner’s solution can be derived from
the 2-soliton solution that is obtained by applying the inverse scattering
method to Einstein-Maxwell equations. Secondly, we study the structure of
solution. Finally, we consider the definitions of charge and mass and the
equilibrium condition. In section 3, we present the N = 2 case of the ax-
isymmetric N-Reissner-Nordstrom solution. The structures of solution, the
definitions of charge and mass, and the equilibrium condition are compared
with those in Bonner’s solution. We also present the singularity structure of
the solution that satisfies the equilibrium condition. In section 4, we give a
brief discussion on the definitions of individual masses and charges.

2 Bonner’s solution

2.1 Derivation of solution

Bonner’s solution is expressed in the prolate spheroidal coordinates (x,y)

as
ds2 — o202 {(UV(;B_Vyz_)SU)Q (Iggfl . 1?;)
e e R
where
U=B+Ay—z, V=C+Ay+u. (2.1.2)

In these equations, A, B, C' and o are constants satisfying the relation
A? = BC + 1. (2.1.3)

In order to obtain this Bonner’s solution by applying the inverse scattering
method to Einstein-Maxwell equations, we first consider the metric in the
canonical cylindrical coordinates (p, 2)

ds® = fHQ(dp* + dz?) + p*d¢?] — fdt?, (2.1.4)
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where f and @ are functions of p and z. In the metric (2.1.4), the source-free

Einstein-Maxwell equations
1
RNV =2 (F#UFIIO' - 46#1/FaﬁFaﬁ) )
By =0,
F;w = Auap _A;ul/
are written as
(ln f)m/) +p71(hl f)al) +(1H f)7zz = 2f71(Xa/2) +X7z )7
p _
(In@),,= 5[(ln f)i _(hlf)ag] —2pf I(X’i _Xai ),

(nQ)..=p(In f),, (In f),. —4pf " X.p Xoz »
Xopp H0 Xop X2z = Xop (I )+ (I f)2

where y = —Ap. We next introduce a function ¢ by

{ Vo=—=pf"X0p
o pf71X7z )

and rewrite Eqgs.(2.1.8)-(2.1.11) as
(I f)pp o (I f),p+(I0 f) o = 2072 f (00,2 +00.2),
Q)= Ll f)2 —(n f)2]+ 207 F(0.2—0.2),

(ln Q)7Z = p(hl f)w (lIl f)az +4p—1f¢7p ¢7z I
/lljapp 7p_1¢7p +w722 = 7[1/}7,0 (ln f)?p +17Z)7Z (ln f)az]~

We further introduce the 2 x 2 matrices h, S and 1" defined by
h— hoo  hor) _ JH? S
th hll fl/Qw f71/2p2 4 f1/2¢2 )
S = ph,, h=t, T =ph,.h'.
Using these matrices, we find that Eqgs.(2.1.13)-(2.1.16) reduce to
(phap hil)w +(ph7z hil)az = 07
4 1
(hl Q)vﬁ = 4(111 hOO)ap _; + ;TY(SQ - T2)7

(In@),. = 4(In hg),. +%Tr(ST).

(2.1.19)
(2.1.20)

(2.1.21)
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We now apply the inverse scattering method to solve Egs.(2.1.19)-(2.1.21)
with the condition

det h = p°. (2.1.22)

Assuming the seed matrix hy = diag(1, p?) that corresponds to the flat metric
and no electromagnetic field, we find that the one-soliton solution satisfying
the condition (2.1.22) is unphysical because f < 0. The two-soliton solution
is given by

 papia[p?(pe — )?(prp2 — 142)” + (0% + pafin)® (prg2 — paqa)?]
hoo = 2 2 2 2 2 27
(2 — 11)*(pr1p2p® + qraapapi2)? — (p* + papi2)?(Prgapia — P2qipt)
(2.1.23)
hoo = —(p2 — pa)(p° + paje)

paa (113 + P*)(P10° + aiid) — pra (13 + P (P30° + G3113)
(2 — p1)2(P102p? + Q@apapi2)? — (07 + pafi2)?(Prgapta — P2qupnn)?’
(2.1.24)

where

— _ _ 2 2
{ ==zt y/(w -2+ p (2.1.25)

o = wy — 2z — /(w2 — 2)* + p?,

and p1,p2, q1, g2, w1, wo are constants. Egs.(2.1.23) and (2.1.24) lead to the
results

;o= [ papizlp(p2 = ) (P1p2 — 0102)* + (0° + 1 p12)* (P1g2 — Pay)’]
(2 = 11)*(P1p2p® + qqapapz)® — (p° + papiz)*(praepiz — paqupin)?
(2.1.26)
o= (g2 — ) (P + ppn)

2g2(p3 + p°) (D10 + Gid) — pru (13 + p*) (P3p” + G5 13)
papi2[p*(p2 — p1)?(prp2 — 1q2)* + (P? + pai2)?(prge — p2qi)?)’
(2.1.27)
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and the integrations of Egs.(2.1.12), (2.1.20) and (2.1.21) give

X = (p2—pa)(p® + pap)
P2q2(PF — @) (1 + p?) — pran(p3 — 43)pa (13 + p?%)

X )
(12 — 10)2(P1p2p® + Qo jin)® — (02 + papia)2(Prgatis — paqipin)?
(2.1.28)
4
Q = O {(sz - Q1Q2)2P2(M2 - M1)2 + (p1g2 — p2q1)2(p2 + M1M2)2
(13 + p*) (13 + p?) ’
(2.1.29)

where Cy is a constant.
If we introduce the prolate spheroidal coordinates (x,y) defined by

{ p=0y@2=1)1—1?) (2.1.30)

z— 2y =01y,

with
Wo — W1 wa + Wy
=, = 2.1.31
g 2 y 20 2 s ( )
we then find that Eqgs.(2.1.26), (2.1.28) and (2.1.29) are written as
222 _ 1 2(1 — o2 2
f o= {02(‘” 3“4( Y )2] (2.1.32)
(co +c1)* = (e3+ cay)

2(eae3 — c1c4y)

= 2.1.33

X (o + ¢1)? — (3 + cuy)?’ ( )
Q =cC {@ — ) +d(l - zﬁ)T
- 2 )

x27y2

(2.1.34)

where the constants ¢y, ¢, c3 and ¢4 are given by

1 = P1p2 + 1G2
Co = P1P2 — Q142

2.1.35
ez = —(p1ga + o) ( )
cs = —(P1q2 — P2q1)-

In Eq.(2.1.35), we note that the following relation holds:

A+ =c+ac (2.1.36)
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Furthermore, if we define the relations by

A:ﬁ, B:c3*617 C:C:erCl7 (2.1.37)

(&) (&) (&)

we then find that Eqs.(2.1.32)-(2.1.34) are rewritten as

UV — BV —CU\?
Y e A e 2.1.
/ < o ) , (2.1.39)
CU — BV
- 227 2.1.39
X T ( )
UV — BV —CU\"
Q = <a«:2_y2> . (2.1.40)

This is Bonner’s solution given by Egs.(2.1.1)-(2.1.3) with Cy = ¢, ®.

2.2 Structure of solution

Hereafter we set zp = 0 and study the structure of Bonner’s solution.
We first see the asymptotic behaviors of solution at the spatial infinity
P2+ 22 — oo

2m 2m? + ¢? 2lez
~ 11— - 2.2.1
f /p2_|_z2+ p2+22 (p2+22)3/27 ( )
e me mlz
~ — 2.2.2
X /pg +ZQ p2 +ZQ + (p2 +Z2)3/2’ ( )
(m? —e*)p’
~ - 2.2.3
¢ G 229
where m, e and [ are constants given by
m = 2207 (2.2.4)
Co
e = 2%, (2.2.5)
Co
Cy
I = ——o. 2.2.6
% (2:26)
We note that Eq.(2.1.36) gives the relation
m? —e* = 4(o% = I?), (2.2.7)
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and find that the field described by the solution has a dipole moment.

We next present the behaviors of solution around the symmetry axis
defined by p = 0. In the following investigation, we assume that ¢ > 0 and
[ > 0 without loss of generality. Dividing the axis into three regions, we have
i) z > o region

. 16(02 _ 22)2
! = [(e — 20)2 — (m + 22)2]2’ (2.2.8)
¢ =" (2.2.9)
- Rt (2.2.10)

(e—=20)2 — (m+22)%
ii) —o < z < o region

161*(0? — 22)?

= 2.2.11

/ (m20? — €202 + dmao® + 40* + deloz — 41222)%’ ( )
l8

Q= = (2.2.12)

4o(ea? + Imz)
X = 2.2 2.2 3 1 2,27 (2.2.13)
m20? — e?0? + dmo3 + 4ot + deloz — 412z

ili) z < —o region

B 16(0% — 2%)?

f = (e £ 207 = (m — 2277 (2.2.14)
QR =1 (2.2.15)
4(lm + ez)

(e +20)2 — (m —22)%

(2.2.16)

We finally study the singularity structure of solution in the prolate spheroidal
coordinates (z,y). Bonner’s solution with the constants given by Eqs.(2.2.4)-
(2.2.6) is written in the coordinates (z,y) as

B 4(eox + lmy)

| 160% — D+ P— )P
= [(202 +m)?2 — (2ly — €)?]2’ (2.2.18)

o - PE@-Dra-yp) (2.2.19)

0-8(1;2 _ y2)4
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The curvature invariant R*°R,5.s is given by

4096012 (22 — 2)°
[+ 2077 (e~ 2P ) B0 T
(polynomial of z, y) (2.2.20)

R R, »

X

The points (z,y) = (&1, £1) are not singularities unless (m=4-20)*—(e421)? =
0 because

16384(5* — 61%0% + 30*)
aByd _ _

R Rogys = [m + 2072 — (e — 2171 at (z,y) =(1,1) (2.2.21)
16384(51* — 61202 + 30
[(m+20)2 — (e + 20)2]4’
N 16384(51* — 6102 + 30*)
R ﬁwéRaﬁw = = 20)7 — (e — 231" at (z,y) =(—1,1) (2.2.23)
16384(5* — 61%0% + 30)
[(m— 2072 — (e + 207"

R° Raﬂ%

at (z,y) = (1,-1) (2.2.22)

RPPR55 at (z,y) = (—1,—1) (2.2.24)

However, we find that the points (z,y) = (—1,%1) are singularities when

(m,e) = (20,£2l). In this case, the curvature invariant at y = +1 is given

by

64(51* — 121202 + 120" + 61%c%x — 120*x + 30%2?)
o¥(x +1)8

RV R 55 = .(2.2.25)

We also find that the points (z,y) = (1,£1) are singularities when (m,e) =

(=20, £21). In this case, the curvature invariant at y = +1 is given by

64(50* — 120%02 + 120" — 6120z + 120z + 30%2?)
o8(x —1)8

R R.55 = .(2.2.26)

In the more general case, singularities exist at the points where the following
relations hold:

o m—e
= ——x— 2.2.27
y AT ( )
o m+e
= — . 2.2.2
Y T (2.2.28)
In the case ¢ > [, if
mte>—-2(c—1), (2.2.29)
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there are no singularities in the region = > 1 but singularities in the region
x < —1, while if

mEe<2(o—1), (2.2.30)

there are no singularities in the region < —1 but singularities in the region
x > 1. In the case o < [, there are singularities in both regions.

2.3 Definitions of mass and charge

From the asymptotic behaviors (2.2.1) and (2.2.2) at the spatial infinity,
we find that Bonner’s solution describes the field created by a total mass m
and electric charge e. In order to see where the individual masses and charges
exist, let us calculate the Komar integrals over isolated three dimensional
surfaces. The Komar charge is defined by the flux integral over a three
dimensional surface S; as

My{FOK/ gds;, (2.3.1)

where ds; is the surface element of S;. In the metric (2.1.4), we can write the
integral (2.3.1) explicitly as
1

I (pf Xopds, +pf T x0z dss), (2.3.2)

€ = —

and using the relation (2.1.12), we have

1

471_ (¢,zd9p U),p dsz)- (233)

€ =

If we consider S; as a cylinder speciﬁed by a lower base at z = zy4, upper base
at z = z, and side at p = p,, we can calculate the integral (2.3.3) as

1
The Komar mass is defined by the surface integral of the covariant derivative

of the time-like Killing vector £* over S;. Taking account of the contribution
of electrostatic field to the surface integral, we have [19]

1 .
m; = E %g (§O,l + XFOZ)\/ —g dsy. (235)

_10_
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In the metric (2.1.4), the integral (2.3.5) is written as

1
87

Substituting the solutions (2.1.26) and (2.1.28) into the integral (2.3.6) and
performing the integration, we obtain the expression

1
m; = 877% (K,.ds, — K,,ds.), (2.3.7)

]{ (= X)spds, + pf 7 (f = X,z dss). (2.3.6)

m; =

where K is the function of p and z given by

K = (p2— m)(p* + ppz)
PP(13 — i) (pivs — ai@3) + (p* — pi3) (P15 — paai)
papia[p*(p2 — p)2(Prp2 — 1q2)? + (P? + papi2)?(Prge — paqi)?]
If we consider the surface S; as the same cylinder as mentioned above, we
have

(2.3.8)

1

m; = Z[K(O’ zu) — K (0, zq)]. (2.3.9)
When we set (z,, z4) = (+00, —00) in the definitions (2.3.4) and (2.3.9),
we have e = e and myeq = m, respectively, which coincide with the

definitions given by the asymptotic behaviors (2.2.1) and (2.2.2) of solution.
Setting (zy, zq) = (+00,+0+0), (+0—0,—0+0) and (—o —0, —o0), we have
e; = 0 and m; = 0, which show that no charge and mass exist in these regions.
Finally, setting (z,, z4) = (+0+0,4+0—0) and (2, z4) = (—o+0,—0—0), we
conclude that the charge and mass exist at the points z = +¢ and z = —¢ on
the axis defined by p = 0. The definition (2.3.4) gives the charges at z = +o
and z = —o as

m? —e? +2mo

e
y = ———— 2.3.1
e m?—e?+2mo
e = o — 2.3.11
¢ 2 4l (2:3.11)
respectively. The definition (2.3.9) gives the masses at z = +0 and z = —0
as
m  eo
s = —+ =, 2.3.12
M 2 "9l (23.12)
m  eo
= 2.3.13
" 2 2 (23.13)

_11_
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respectively. We note here that the relations e = €45 + €6—» and myppa =
M4, + m_, hold.

2.4 Equilibrium condition

As is seen in the preceding subsections, Bonner’s solution describes the
gravitational and electric fields created by two charged masses located at the
points z = +0 and z = —¢ on the symmetry axis. In the general case, there
exists a strut between these points. In the case where there is no strut, two
charged masses are in a static equilibrium in which Coulomb force precisely
balances gravitational force. As the strut causes a conical singularity on the
axis, let us calculate the quantity P, defined by

P} = liny <ng;> = lim Q. (2.4.1)
When Py = 1 the axis is spatially Euclidean and Py # 1 expresses a deviation
from the spatially Euclidean metric.

From the behaviors of solution around the axis given in Egs.(2.2.8)-
(2.2.16), we find that the axis is spatially Euclidean and there is no conical
singularity in the regions z > +0 and z < —o. In the region —o < z < +0,
the axis is spatially Euclidean and there is no strut if the relation [ = ¢ holds.
In this case, the equilibrium realizes in Bonner’s solution. If we set ¢ =1 in
the relation (2.2.7), we have m = te. Therefore, in the equilibrium case, the
charges and masses of each body become

ero=¢€ €e_5,=0, my,=m, m_,=0, (2.4.2)
or
eio =0, e 5o=¢ my, =0, m_,=m. (2.4.3)

We find that one electric charge and mass disappear in the equilibrium case.
In this case, the solution reduces to
X = (ex + my) : (2.4.4)
o(z? —y?) +mz+ey
20,2 _ 22
Fo= =y , (2.4.5)
[o(x? —y2) + ma + ey|?
Q = 1 (2.4.6)

_12_
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Taking account of the relation m = +e, we have

+

X = ——2> (2.4.7)

olxFy)+m

o*(z Fy)°
= —= 2.4.8
I = Gewp+mP (248)
We find that f = (1 F x)? and the solution becomes the one-body type of
Majumdar-Papapetrou solution. We can also find that the solution in this

case is reduced to the extremal Reissner-Nordstrom solution.

3 The double Reissner-Nordstrom solution

3.1 Derivation of solution

The Reissner-Nordstrom solution is obtain by assuming a relationship
f(x) in Einstein-Maxwell equations (2.1.8)-(2.1.11). This assumption leads
to the relation

f=1-2cx+ % (3.1.1)
and reduces Eqgs.(2.1.8)-(2.1.11) to

Xspp +071X7p +X522 = 2f71(X - C) ()(,/2J +X,z ), (312)
(InQ),,=2pf (¢ = 1) (xos —x:2 ), (3.1.3)
(N Q). = 4pf (S = 1)Xop Xoz 5 (3.1.4)

where c¢ is an arbitrary constant. Introducing a function R(p, z) with con-
stants b and a = bc by

b

= 3.15
X“Rya (3.1.5)

we write the function f as

R? — 2
= 3.1.6
! (R+a)?’ ( )
and Eq.(3.1.2) as

R,,+p 'R, +R...=2R(R* — d*)""(R.+R2), (3.1.7)

_13_
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where d? = a? — b?. Further introducing a function f by

R—ditt (3.1.8)

1—f

we find that this relation transforms Eq.(3.1.7) into a linear differential equa-
tion

(ln f)app —O—pfl(ln f)vp +(ln f)azZ: 0, (3.1.9)
and Eq.(3.1.3) and (3.1.4) into
(@), = Zln);-(nf)2], (3.1.10)

Q). = pnf),(nf).. (3.1.11)

The expressions (3.1.9)-(3.1.11) are the same as those for the vacuum Ein-
stein equation in the metric (2.1.4) with f instead of f. Applying the inverse
scattering method to solve Egs. (3.1.9)-(3.1.11), we have the 2-soliton solu-
tion given by

f = JL;QQ., (3.1.12)
Q — pQ(Ml_,u2)2 (3.1.13)

(1} + ) (5 + p?)’

with

=20 —2—d+ /(20— 2z —d? + (3.1.14)
u2220—2+d—\/(20—2+d)2+p2, o

where zp is a constant. In the prolate spheroidal coordinates (z,y) defined
by

p=dy/(x? = 1)(1 -y,
{ ey (3.1.15)

we have

p =d(x—1)(1-y),
{ po = —d(z — 1)(1 +y), (3.1.16)

_14_
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and
b
= 1.1
X dr +a’ (3-1.17)
d*(z? — 1)
= — 1.1
/ (dx +a)?’ (3.1.18)
2?2 -1

These show that the 2-soliton solution for f gives the Reissner-Nordstrém
solution.
The 4-soliton solution is given by

= %, (3.1.20)
0 = pg[(m — p2) (1 — ps) (. — pua) (2 — pi3) (p2 — pa) (p — M4H2
(13 + ) (13 + p*) (13 + p) (uf + p*) (1 p2pizpia)*Cy

)

(3.1.21)
with
m:zl—z—dl—l—\/(zl—z—d1)2+p2,
po =2 —z+di— /(21 — 2+ d)* + P, (3.1.22)
pz =20 — 2z —dy + /(22 — 2 — da)2 + p2,
/L4:ZQ—Z+CZ2— \/(22—2+d2)2+p2,
and
04 = 16[(251 — 22)2 — (d1 — d2>2]2, (3123)

where 21, 22, dy, do are constants. For the quantities f and y, we have

4d2 4
fo= P H1fa b3 g (3.1.24)

[(d+a)p* + (d — a)prpapzpa)*’
b(p* — mpapizpa)
= . 3.1.25
AR IR v (3:1.25)

The 4-soliton solution obtained here is the N = 2 case of the axisymmetric N-
Reissner-Normstrom solution and the so-called double Reissner-Nordstrom
solution.

_15_
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3.2 Structure of solution

In order to see the structure of the double Reissner-Nordstrom solution
obtained in the preceding subsection, we first study the asymptotic behaviors
of solution at the spatial infinity. In the spatial infinity /p? + 22 — oo, we
have

1— 2a(d1 + dg) (2(12 + bz)(dl + d2)2 . 2a(d121 + dQZQ)Z

) d(+ 7
(3.2.1)
b(d1 + d2) B ab(d1 + d2)2 n b(dlzl + dQZQ)Z <3 9 2)
dy/p? + 22 d(p*+22) d(p? + 22)3/2 7 -
d d 22
Q ~ 1_M. (3.2.3)

(0 + 22)
Hereafter we assume that zo + dy > 29 — dy > 21 + dy > 21 — d; without

loss of generality. The behaviors of solution around the axis defined by p =0

are obtained in the following regions as

i) z > 29 + dy region

f~r, Q=1 x~/° (3.2.4)
ii) 20+ dy > 2 > 25 — dy region
b
fert Qepts =0t (3.2.5)
ili) 25 — dy > z > 21 + d; region
2
0 (21 — 22)* = (di +d)” 0
f~p, Q =) — ()] X (3.2.6)
iv) z1 +dy > z > z; — dy region
b
[~ Q~p? X= o (3.2.7)
v) z; —dy > z region
f~p" Q=1 x~p" (3.2.8)

The behaviors in the regions ii) and iv) are the same as those on the horizon
in the Reissner-Nordstrom solution. Therefore, we conclude that there are
two Reissner-Nordstrom black holes in these regions. The behaviors in the
regions 1) and v) show that the axis in these regions is spatially Euclidean.
The behavior in the region iii) shows that there is a strut in this region.
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3.3 Definitions of charge and mass

Let us consider the charges and masses of each Reissner-Nordstrom black
hole. The charges are defined by Eqgs.(2.3.1) and (2.3.2), and in this case the
integral in Eq.(2.3.2) becomes

b _ _
o= g fs [p(in F),pds, + p(1n ). ds.). (3:3.1)

The integration of Eq.(3.3.1) gives the expression

b
e; = 5 Sl(H,Z ds,+ H,,ds.), (3.3.2)
where H is the function of p and z given by
H = py + po + ps + pg + 4z2. (333)

If we consider the surface S; as the same cylinder as in the subsection 2.3,
we have

b
e = alH(0,2,) = H(0,2). (3.3.4)

As for the masses, the definitions (2.3.5) and (2.3.6) are written as

a

m; = Srd g [p(In f)ap dsp, + p(In f)vz ds.], (3.3.5)

which gives the expression
a

m; = @[H(O7 zy) — H(0, zq)]. (3.3.6)

When we set (2, z4) = (+00, —c0) in the definitions (3.3.4) and (3.3.6),
we have

b(dy +d a(dy +d
Etotal = %7 Miotal = %7 (337>

respectively, which coincide with the definitions given by the asymptotic
behaviors (3.2.1) and (3.2.2). Setting (zy, z4) = (400, 2a+d2), (20—da, z1+d1)
and (23 — di, —o0), we have ¢; = 0 and m; = 0, which show that no charge
and mass exist in these regions. Finally, setting (2, z4) = (22 + da, 22 — da)
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and (zy, zq4) = (21+d1, 21 —d1), we have the charges and masses of each black
hole. For the lower and upper black holes, the definition (3.3.4) gives their
charges e; and e; as

:% :% (3.3.8)

€1 d’ €2 d>

respectively, and the definition (3.3.6) gives their masses m; and my as
My = —— (3.3.9)
respectively. We note here that the relations

Ctotal = €1 T €2,  Motal = M1 + Ma. (3.3.10)

hold also in this case.

3.4 Equilibrium condition

The behavior of solution in the region iii) given in the subsection 3.2
shows that there exists a strut between two Reissner-Nordstrom black holes
in general. The quantity Py defined by Eq.(2.4.1) becomes

(22— 21)% — (dz — d1)?]”
(22 — 21)2 — (d2 + d1)2

P = (3.4.1)

Let us consider the equilibrium condition in this case. Imposing the condition
PO2 = 1 and taking account of the assumption zo — dy > 21 + di, we have

dydy = 0. (3.4.2)
Because myms # 0, Eq.(3.4.2) leads to
d=0 or a=d=b. (3.4.3)

From this and the relation m, /e; = ma/ea = a/b, we find that the conditions
on each mass and charge are given by

my = :I:el, mo = :|:€2. (344)
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Conversely, when the conditions (3.4.4) hold, we have d; = dy = d = 0 and
P} = 1. We find that under the conditions (3.4.4) there is no strut and the
solution describes two Reissner-Nordstrom black holes in a static equilibrium.

In the equilibrium, by taking the limit dy, ds — 0 in the solutions (3.1.24)
and (3.1.25), we have

. -2
f = (1 + m + m2> , (3.4.5)
5 T2
b mq mi mo -t
x = —(E ) (M) (3.4.6)
a \ 71 9 T T2

where | = \/m and 1y = y/p? + (2 — 22)2. This is known as the

two-body type of Majumdar-Papapetrou solution. In the prolate spheroidal
coordinates (z,y) defined by

o= 29 ; 21 (x2 _ 1)(1 — yg)’
(3.4.7)
7224*21 22—21“
~= 2 T‘Lyv
we have
"o W (3.4.8)
ry = w7 (3.4.9)
2
and
— 2b[(m1 + ma)z + (my — my)y]
X = al(z2 — 21) (22 — y2) + 2(my + ma)z + 2(my — my)y]’ (3.4.10)
_ (20 — 21)2(a? — y2)?
f - [(22 - Zl)(332 — y2) + 2(m1 + m2)1’ + 2(m1 — mg)yP, (3411)
="t (3.4.12)

This solution has event horizons at (z,y) = (1, £1). The curvature invariant
of this solution is given by
211
[(22 — 21)(22 = y?) + 2(mu + ma)z + 2(m1 — Ma)y)®
X (polynomial of x,y). (3.4.13)

R Ragys =
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There are singularities at the points where the coordinates (z,y) satisfy the
relation

(22 — 21)(2® — y?) + 2(my + ma)z + 2(my — my)y = 0. (3.4.14)

We find that these points do not exist in the region x > 1 and exist inside
the event horizons specified by 7, = 0 and o = 0. This is a very interesting
two-body type of black hole solution, which was studied in detail in the paper
by Hartle and Hawking [20].

4 Discussion

In this paper, we use the Komar integrals in order to define the charges
and masses of each body. However, Bonner argues that it ‘seems not to be
allowable’ to use the integrals because the surfaces S; introduced in subsec-
tions 2.3 and 3.3 contain the points at which they meets the conical sin-
gularities [16]. In fact, the definitions of the charges and masses given in
subsection 2.3 differ from those by Bonner. Bonner defines them from the

asymptotic behaviors at the spatial infinity r_, = /p? + (2 + 0)? — o0 and
T4o = \/P?+ (2 —0)? = 00 as
B B
X ~ to 4 ;U’
T+o L
Foa1o 2mS_E;) B Qm(_l?

Tyo [

In terms of the constants introduced in subsection 2.2, the results are given

by

m _ ¢ Im

o 2 2
B _ ¢_Im

€~ T 97 oy
B m  le
to 2 ' 920’

m® = Ml
2 20
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On the other hand, in the double Reissner-Nordstrom solution, we find that

the asymptotic behaviors at the spatial infinity r; = \/p?> + (2 — 21)? — o0
and ro = 1/p? + (2 — 23)2 — oo are given by
e e
X o~
1 T2
2m 2m
foaono 2
1 T2

where ey, e5, m; and my are defined in Egs.(3.3.8) and (3.3.9). These behav-
iors show that the charges and masses defined by the asymptotic behaviors
of solution coincide with those by the Komar integrals. As the surfaces S;
used in the case of the double Reissner-Norstrom solution also contain the
conical singularity, it is possible that the conical singularity does not cause
the differences in the definitions of charges and masses. Further investigation
on this problem should be studied in future.
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