
 情報学研究 Feb.2013

 14

	

次世代ネットワークにおける
最低帯域保証サービスのためのプロビジョニングアルゴリズム

A Novel Provisioning Algorithm

for Minimum Bandwidth Assurance Services in Future Networks

嶋村 昌義*

Masayoshi Shimamura

Email: shimamura.m.ad@m.titech.ac.jp

	

インターネットにおいて、アプリケーションサービス事業者の観点では、通信帯域が保証されるこ
とが望ましい。一方で、ネットワーク事業者の観点ではネットワークの利用効率を向上できること
が望ましい。そのため、有限な資源である帯域をどのように割り当てるのかが重要な課題となる。
特に、インターネットのトラフィックはバースト性が高く、静的な帯域割当は非効率となるため、
効率的な帯域割当手法が必要となる。本稿では、最低帯域保証サービスを実現するための、プロビ
ジョニングアルゴリズムを提案し、その有効性を示す。

The traditional virtual private network (VPN), which provides best-effort or static bandwidth allocation
service, does not provide sufficient support for bursty Internet traffic. To support bursty traffic, a VPN
provider can offer minimum throughput assurance (MTA) service to customers. MTA service provides
higher throughput predictability than best-effort VPN service. Although there are many proposed network
architectures for MTA service, certain parameters should be decided offline as part of the provisioning
process. Determining adequate values of such parameters is necessary for quality of service control of
bursty Internet traffic by providers. The difficulty in such provisioning is to meet the minimum throughput
requirements in any active state matrices. We propose a provisioning algorithm that uses nonlinear
programming for MTA service. We then numerically demonstrate the proposed algorithm and its
performance.

―――――――――

*: 獨協大学経済学部非常勤講師	

Vol.2 次世代ネットワークにおける最低帯域保証サービスのためのプロビジョニングアルゴリズム

 15

1. Introduction
Virtual private networks (VPNs) are used by many
organizations as private information networks
connecting distant sites at costs lower than those
possible with a network of leased lines; however,
VPNs have difficulty meeting quality of service
(QoS) requirements because they must share
network resources among all users. To overcome
this problem and satisfy some of the QoS
requirements, a framework called
provider-provisioned VPN (PPVPN) was developed
by VPN providers. Because customers contract with
the provider offering PPVPN, the provider must
adequately allocate limited network resources and
satisfy requirements for its customers.
The current PPVPN does not support bursty
Internet traffic well because it allocates network
resources to customers statically. If VPN providers
guarantee customers a static amount of bandwidth,
the result is low bandwidth utilization. One way of
supporting bursty Internet traffic is to assure the
minimum throughput to customers. With minimum
throughput assurance (MTA) service, a customer
can attain substantially higher throughput than an
agreed minimum throughput during periods of
non-congestion. During periods of congestion, the
minimum agreed throughput is provided as an
average over a certain span of time. Therefore, MTA
service can provide higher throughput predictability
than best-effort VPN service.
To further describe the MTA service, we illustrate
throughput allocation scenarios in Figure 1. In the
figure, aggregated traffic from site A1 to A2 and
from site B1 to B2 are each assigned 50 Mb/s as a
minimum throughput. We denote macro flow as
aggregated traffic. Figure 1(a) depicts a scenario with
no congestion, i.e., the macro flow from site B1 to
B2 is idle. In this case, the macro flow from site A1
to A2 can obtain more than the minimum
throughput. Conversely, the throughput for the
macro flow from site A1 to A2 is only 50 Mb/s when
the link is congested, as illustrated in Figure 1(b);
however, even in the congestion scenario, the MTA
service can provide the minimum throughput for
any macro flows.
Much research on MTA service has been
performed. Clark et al. proposed random early drop
routers with in/out bit (RIO) [1] to allocate capacity
for best-effort VPN service. According to their
performance evaluation, RIO can allocate capacity
with slight effect on round-trip time (RTT), which is
considered an important milestone in MTA service.
Fabrega et al. proposed a guaranteed minimum
throughput service for TCP flows using
measurement-based admission control [2]. Several

MTA service methods have also been proposed
based on available bit rate (ABR) service of
asynchronous transfer mode (ATM) networks. Li et
al. proposed a core-stateless congestion avoidance
scheme for IP networks [3]. Lee et al. proposed a
weighted proportional fair rate allocation (WPFRA)
method for differentiated service (DiffServ) on the
Internet [4]. Yokoyama et al. proposed a one-way
version of the WPFRA method to improve its
performance [5]. Shimamura et al. proposed an
extension of the WPFRA method [6] for the VPN
hose model [7] which is a VPN model to utilize the
network resource efficiently.
To apply the aforementioned methods, certain
parameters should be decided offline. For example,
RIO requires a target rate for each TCP micro/macro
flow, and the WPFRA method requires the weight
for each macro flow; however, no parameter
determination algorithm has been proposed. The
difficulty in achieving such a determination
algorithm is to meet the minimum throughput
requirements in any active state matrix (More
detailed illustration of an active state matrix is given
in Figure 4 within Section 3.2, in which each
element of the matrix represents an active/idle state
of traffic from a source to a destination.
In this paper, we determine adequate parameters
for the MTA service, and we define this as a
provisioning. Although determination algorithms for
network topology and active queue management
have been proposed [8, 9], they cannot satisfy the
minimum required throughput of every customer in
MTA service when active state matrices change
dynamically, i.e., elements of the active state matrix
may be idle or may frequently switch from active to
idle states. Therefore, these algorithms cannot be
applied to the provisioning process for the MTA
service.
We propose a provisioning algorithm that uses
mathematical programming, in particular, nonlinear
programming (NLP), for providing MTA service in
PPVPNs. Mathematical programming is widely and
effectively used for network provisioning [10]. The
proposed algorithm adequately distributes the
limited network bandwidth to all customers within
the given constraints.
Following this Introduction, this paper is
organized as follows. We describe the WPFRA
method in Section 2. Section 3 presents our
proposed provisioning algorithm for the MTA
service. We demonstrate the effectiveness of our
approach with quantitative results in Section 4 and
describe the difference between our studies and
related studies in Section 5. Finally, we offer our
conclusions in Section 6.

 情報学研究 Feb.2013

 16

2. Weight proportional fair rate
allocation method

In the Introduction, we argued that MTA service
improves the throughput predictability of bursty
traffic. To implement the MTA service, we set three
requirements: 1) meet the minimum throughput
requirement from customers in any active state
matrix, 2) fairly distribute the spare bandwidth, and
3) keep high network resource utilization to
efficiently use limited network resources.
The WPFRA method and its variants are
approaches to the MTA service that has a potential
to meet the three requirements above. By
distributing spare bandwidth based on weight
values, the WPFRA method provides weighted
proportional fairness. Before using the WPFRA
method, the VPN provider should decide the weight
values for all combinations of source and
destination sites. Deciding the weight values to
satisfy the minimum throughput requirement
(requirement (1) above) remains a challenge.
Determining the weight values involves finding a
common matrix of values that satisfy the minimum
throughput requirement for all active state matrices.
Before we propose a common weight matrix
determination algorithm to satisfy minimum
throughput requirements for all elements of the
active state matrix, we first describe the WPFRA
method. The WPFRA method can distribute the
available bandwidth in proportion to the weight
value of each macro flow. Edge and core routers
form a VPN provider's network and provide
feedback-driven traffic control to utilize the network
bandwidth efficiently.
Ingress and core routers periodically measure the
amount of arriving traffic and calculate a fair share
rate rf that indicates the amount of allocated
capacity for a macro flow with a weight of one. A
fair share rate is calculated for each output link in a
router. Egress edge routers periodically send a
notification packet to each ingress edge router, and
core routers update the value of rf inside the
notification packet if it is smaller than the current
value stored in the packet. Ingress routers obtain the
rf from the received notification packet and set the
value to the explicit rate ER, which indicates that the
allocated throughput for a macro flow has a weight
of one. Finally, they calculate the allocated
throughput as ER multiplied by the customer's
weight.
To illustrate how the WPFRA method determines
the allocated throughput, we model the calculation
process on Ref. [4] utilizing an algorithm depicted in
Figure 2.

To illustrate this algorithm, we provide the
example depicted in Figure 3. In this example, there
are four sites: customer A has two sites, A1 and A2,
and customer B has two sites, B1 and B2. The traffic
of customer A (B) originates at A1 (B1) and is
destined for A2 (B2). As described in the figure, the
values w(A1, A2) and w(B1, B2) are assigned weights of 1
and 2, respectively. The numbers associated with
links in the figure indicate the amount of bandwidth
for each link. If C(I1, C1) is larger than 20, B(A1, A2) and
B(B1, B2) become 20 and 40, respectively. Because C(I1,
C1) is limited to 10, throughput calculation is difficult.
Suppose customers A and B are both active,
meaning both are producing traffic. Then, rf(I1, C1), rf(I2,
C1), and rf(C1, E1) converge at 10, 45, and 25,
respectively, based on the above algorithm. As a
result, ER(I1, E1) becomes 10 and ER(I2, E1) becomes 25.
Since w(A1, A2) and w(B1, B2) are 1 and 2, respectively,
B(A1, A2) becomes 10 and B(B1, B2) becomes 50. These
results are summarized in Table 1. The first two
columns depict the active state field, a value of 1
indicating an active state, a value of 0 indicating an
idle state.
As described above, the WPFRA method
determines the explicit rate ER and the allocated
bandwidth B of each customer, and these values are
calculated from the topology, active state matrix,
and weight matrix. The network topology is
generally assumed to be constant during a long time,
whereas the active state and weight matrices are
dynamically changing. Therefore, the provider
needs to determine a weight matrix that can
accommodate any active state matrix.

3. Weight determination algorithm
In the previous section, we described the WPFRA
method and the difficulty of determining adequate
parameters for the WPFRA method. In this section,
we propose the weight determination algorithm for
allocating sufficient network resource to every
customer using MTA service. The proposed
algorithm is divided into two sub-algorithms: a
weight matrix determination algorithm for each
active state matrix; and a common weight matrix
determination algorithm for every active state
matrix.

Vol.2 次世代ネットワークにおける最低帯域保証サービスのためのプロビジョニングアルゴリズム

 17

Figure 1 Throughput allocation in MTA service

Figure 2 WPFRA algorithm (Conventional algorithm)

Figure 3 Example of throughput calculation: Network

topology

Table 1 Throughput calculation results in Figure 2

Table 2 Example of weights calculated using NLP

3.1 Weight matrix determination

algorithm
We first develop an algorithm to calculate
adequate weight values based on network topology,
a minimum throughput matrix, and an active state
matrix. The provider needs to allocate sufficient
bandwidth satisfying the minimum throughput of
every customer using limited network resources. We
assume these constraints as part of a mathematical
programming problem in which the allocated
throughput and spare bandwidth can be calculated
using Eqs. (1) and (2. Let Bave be the average
throughput of all customers, Bvar be the variance of
the average throughput of all customers, M be the
required throughput of customers, and U be the link
utilization. Note that X represents a binary variable
defined as follows: Set 0 in a case of idle state and
set 1 in a case of active state. The objective function
and constraints are formulated as follows:

 Objective Function
 * Bave - Bvar

 Constraints
 * B(m,n) ≥ M(m,n) ・ X(m,n)
 * U(s,t) ≤ 1
 * w(m,n) ≥ 1
We adopt the objective function based on the
evaluation index in Ref. [11], which specifies that

 情報学研究 Feb.2013

 18

each customer can obtain high throughput and the
allocated throughput among customers is balanced.
Regarding alternative objective functions, we can
alternatively utilize the functions maximizing the
link utilization of all links in the network or
maximizing the total throughput of all customers.
The allocated throughput, spare bandwidth, and
utilization are all represented by polynomials. Thus,
this mathematical programming can be classified as
nonlinear programming (NLP). Table 2 shows an
example of calculated weights. In this table, the first
three columns represent an active state matrix, the
second three columns represent a calculated weight
matrix using NLP, the third three columns represent
the allocated bandwidth calculated from the weight
matrix, the fourth column represents the resulting
value of the objective function, and the fifth column
represents the link utilization. In the given example,
three customers (X, Y, Z) share a single
bottlenecked link. The required minimum
throughput of (X, Y, Z) is (10, 20, 60), and the
bandwidth of the bottlenecked link is 100. The
calculated weight values are listed for all active state
matrices, i.e., (X, Y, Z) = (1, 1, 1), (X, Y, Z) = (1, 0, 1),
and so on. All resulting allocated throughput values
are equal to or greater than the respective minimum
throughput requirements.

3.2 Common weight matrix

determination algorithm
As we saw in Tables 1 and 2, the allocated
throughput is affected by the active state matrix. An
illustration of this effect is shown in Figure 4. The
active state matrix represents an active/idle state of
traffic from a source to a destination site, i.e., the
values of 0 and 1 represent idle and active states,
respectively. The minimum throughput matrix
describes each customer's minimum throughput
requirements from source site i to destination site j.
The zero element of the active state matrix results in
a zero value in the minimum throughput matrix at
the same element in the active state matrix.
The weight matrix consists of weight values used
by the WPFRA method. When we fix the active state
matrix, we can calculate a weight matrix Wk using
NLP, however, if we change the active state matrix,
the weight matrix Wk’ also changes. Since dynamic
changes to the weight matrix is difficult implement,
we aim to calculate a common weight matrix that
meets the minimum throughput requirement for any
active state matrix. Therefore, we need a strategy to
find such a weight matrix.
To derive a common weight matrix, we iteratively
use NLP. Since NLP requires an initial weight matrix,
the previously derived weight matrix for an active

state matrix can be used as the initial NLP weight
matrix with the input of another active state matrix.
We hypothesize that this iteration of NLP converges
on the common weight matrix and meet the
minimum throughput requirements. Based on this
hypothesis, we define a basic strategy to obtain the
common weight matrix detailed as follows:
Iteration: Previous output values (i.e., the weight

matrix calculated by NLP) are utilized as an initial
weight matrix in the next step.
One distance shift: First, we define the number

of elements that differ between two active state
matrices as a distance. Through the iteration of
active state matrices, we need to shift an active state
matrix to other active state matrices. To avoid
drastic shifts in active state matrices, we shift the
current active state matrix to the next active state
matrix by a distance of 1. For example, suppose an
active state matrix is (0, 1, 1), where 0 and 1
represent idle and active states, respectively, we set
the next active state matrix to (0, 1, 0) because only
the third element in these two active state matrices
differ, thus the difference is 1.
Normalization: The weights represent a

proportional ratio of the allocated bandwidth, i.e.,
the calculated weight matrix (a, b, c) is equivalent to
(ka, kb, kc), where k is a constant number. The
allocated bandwidth calculated by these two weight
matrices are the same. Therefore, we divide the
weight matrix into collision groups, then normalize
the grouped elements of the weight matrix, such as
(ka, kb, kc)/k → (a, b, c), in each collision group.
Stabilization: An element of the weight matrix

corresponding to the zero element in the active state
matrix can be selected for any value. To avoid
needless change in weight values in such cases, we
define constraints for such elements, i.e., we select
the value obtained in the previous iteration.
Search domain reduction: To avoid irrelevant

searching, we set lower and upper limits on the
variables of the objective function. The lower limit is
1, derived directly from the constraints; the upper
limit is (Cmin- Mmin)/Mmin, where Cmin represents the
minimum value of the link bandwidth in the
topology and Mmin represents the minimum value of
the minimum required throughputs. To explain the
reason of the upper limit, we suppose that the
following: 1) multiple customers share the link with
capacity Cmin in the network, 2) one customer
requires the minimum required throughput Mmin, 3)
the minimum weight value 1 is assigned to this
customer, and 4) the total weight value α is assigned
to other customers. In this case, because the limited
link capacity Cmin should be shared among multiple
customers, the following equation 1/(1+α) · Cmin ≥

Vol.2 次世代ネットワークにおける最低帯域保証サービスのためのプロビジョニングアルゴリズム

 19

Mmin (i.e., α ≤ (Cmin - Mmin)/Mmin) should be satisfied.
We construct our common weight determination
algorithm based on the above strategy and illustrate
it in Figure 5 using pseudocode. In our algorithm,
we determine a representative weight matrix with
values selected from a large number of calculated
weight matrices utilizing a convergence index,
which is defined as the maximum ratio of the
number of common weight matrices to the number
of all weight matrices. We call this index the batched
convergence index.
We show example behavior of the proposed
algorithm in the context of Table 3. We suppose the
required minimum throughput matrix of customers
(X, Y, Z) is (10, 20, 60), respectively. There is a
single bottleneck link with link capacity 100. In the
first cycle of the proposed algorithm, after initializing
the weight matrix to (1,1,1), four weight matrices
(1,2,3), (1,1,3), (1,1,3), and (2,1,3) are calculated via
NLP. Note that we skip non-congestion active state
matrices because the weight matrices in such active
state matrices can be arbitrary values. We denote
such skipped values by (-,-,-).
The highest distribution of batched tuples of (1, 1,
3) is 0.5. Therefore, we select the weight matrix
(1,1,3) as the representative weight matrix in the first
cycle. This representative weight matrix is utilized as
the initial weight matrix in the second cycle. Similar
to the first cycle, four weight matrices are calculated
via NLP, and the representative weight matrix
(1,1,3) is selected in the second cycle. In this
example, the weight matrix (1,1,3) is suitable to
every active state matrix.
Users of our provisioning algorithm should specify
the required minimum throughput for each
customer site so that the weight matrix satisfying
minimum throughput requirements can be obtained.
The fundamental calculation complexity is

, where u is the number of customers,
v is the number of sites per customer, and l is the
number of calculation cycles.

Figure 5 Pseudocode of the weight determination

algorithm

Figure 6 Experimental topology

LoopNLP(iteration){
 InitAllWeights(weights);
 SetInputValue(topology, reqbw);
 for (i=0; i<iteration; i++) {
 foreach (pattern) {
 weights = RunNLP(topology,
 pattern, reqbw, weights);
 }
 normalization(pattern, weights);
 }
 }

 RunNLP(t, p, b, w){
 foreach (p) {
 if(active[i] == 0){
 # Stabilize value of w[i]
 SetConstraint(w[i]);
 }
 }
 SetSearchDomain(t, b);
 ans = SolveNLP(t, p, b, w);

 return ans;
 }
end{alltt}

 begin{alltt}
 InitAllWeights(weights){
 weights = (1, 1, ..., 1);
 }

normalization(pattern, weights){
 group = divide_group(pattern);

 foreach (group) {
 normalized_w[i] =
 weights/min(weights);
 }
 return normalized_w[i];
 }

 情報学研究 Feb.2013

 20

Figure 4 Common weight matrix

Table 3 Example behavior of the proposed algorithm

4. Numerical demonstration
In the previous section, we presented our
common weight matrix determination algorithm,
which is based on the hypothesis that weight
matrices converge through iterations of NLP. In this
section, we demonstrate that the proposed
algorithm converges on a common weight matrix
that meets the minimum throughput requirements.
We also investigate the impact of imbalanced
minimum throughput requirements and whether
links have spare bandwidth available.
We use the network topology illustrated in Figure
6 containing one core and three edge routers, which

together form a star topology with a link capacity of
80 on all links. All edge routers behave as both
ingress and egress routers, i.e., traffic is bidirectional
between each of a particular customer's sites. There
are two customers (A, B), each of whom has three
sites (A1, A2, A3) and (B1, B2, B3). Customer sites
are connected to respective edge routers.
In our numerical demonstration, we vary the
required minimum throughput to investigate the
impact of the imbalance ratio and the amount of the
minimum throughput as follows:

There is spare bandwidth in scenarios (b) and (d);
further, the required minimum throughput values
are imbalanced in scenarios (c) and (d).
To evaluate the proposed algorithm, we define the
following two evaluation indices: (1) the success rate,
which is the number of cases satisfying the
minimum required throughput using the
representative weight matrix in each active state
matrix; and (2) the average link bandwidth defined
as the average of the ratio of the total throughput to
the total capacity of active links. We calculate these
values using the representative weight matrix
calculated using our proposed algorithm.
Figure 7 shows results for the four required
minimum throughput scenarios listed above. The
x-axis represents the amount of processing from 1 to
10 iterations. The y-axis represents the resulting
values of the batched convergence index, the
success rate, and the average total link utilization.
As the number of iterations increases, the batched
convergence index converges, indicating that the
representative weight matrix is, in fact, determined
through such iterations. The average total link
utilization remains constant at approximately 0.85,

Vol.2 次世代ネットワークにおける最低帯域保証サービスのためのプロビジョニングアルゴリズム

 21

although the number of iterations increases. This
shows that the proposed algorithm retains the
fundamental advantage of mathematical
programming: i.e., the proposed algorithm can keep
the overall average total link utilization under the
given constrained, even as the number of iterations
increases.
We found that the success rate progressively
converges to 1.0 for all required throughput,
showing that the proposed algorithm can determine
the common weight matrix from the required
minimum throughput matrix.
Next, we describe the impact of spare capacity on
the success rate. Under spare capacity scenarios (b)
and (d), the batched convergence index and the
success rate is substantially lower than that of
scenarios (a) and (c); this occurs because the
calculated weights vary over a wide range due to the
high latitude of values.
Finally, we discuss the impact on the success rate
of imbalanced required throughput among sites.
Our proposed algorithm requires a relatively larger
number of iterations for the success rate to converge
in imbalanced request scenarios (c) and (d); this
occurs because of the complicated network
topology and requests, although it also
demonstrates the effectiveness of our iterative
algorithm.

(a) Balanced requests/No spare capacity

(b) Balanced requests/Spare capacity

(c) Imbalanced requests/No spare capacity

(d) Imbalanced requests/Spare capacity

Figure 7 Success rate of the batched convergence
index

5. Related work
In this section, we describe the difference
between our proposed algorithm and two
conventional provisioning algorithms.
The first conventional algorithm [8] can determine
adequate network topology for the VPN hose model
[7]. It can reduce the required bandwidth and
achieve high bandwidth efficiency. Although this
algorithm is helpful in constructing the network
topology, it cannot achieve the MTA service
because the algorithm cannot allocate network
resources to the customers adequately.
The second conventional algorithm [9] adjusts
parameters of a weight fair queuing (WFQ)
scheduler. This algorithm achieves fairness for a
single output link at the WFQ-supported router;
however, it cannot support allocating available
bandwidth across the entire network. Therefore,
this algorithm cannot adapt to provide the MTA
service.

6. Conclusion
To satisfy minimum throughput requirements of
VPN customers, we proposed a provisioning
algorithm that supports the MTA service. Our
proposed algorithm is a necessary tool for QoS
traffic control by providers. In our proposed
algorithm, we first created an NLP to find a weight
matrix for each active state matrix. Then we
proposed a common weight matrix determination
algorithm based on the hypothesis of convergence

 情報学研究 Feb.2013

 22

in elements of the iteration of the NLP. Through
preliminary performance evaluations, we showed
indications of possibilities, i.e., the proposed
algorithm can converge on a common weight
matrix using the convergence index. We also
evaluated the impact on convergence of the
imbalanced amount of required throughput and the
presence of spare bandwidth. In future work, to
concentrate the convergence index more precisely
and rapidly, we will focus on a pruning algorithm
and consider highly correlated convergence indices.
Furthermore, we attempt to apply the proposed
algorithm to virtual network resource embedding
problem in network virtualization environment [12].

References
(1) D. Clark and W. Fang: “Explicit allocation of
best-effort packet delivery service”, IEEE/ACM Trans.
Networking, vol. 6, no. 4, pp. 362-373 (1998).
(2) L. Fabrega, T. Jove, P. Vila and J. Marzo: “A
guaranteed minimum throughput service for TCP
flows using measurement-based admission control”,
International Journal of Communication Systems, vol.
20, no. 1, pp. 43-63 (2007).
(3) J. Li and J. Liang: “A novel core-stateless
ABR-like congestion avoidance scheme in IP
networks”, International Journal of Communication
Systems, vol. 18, no. 5, pp. 427-447 (2005).
(4) C. Lee, C. Chen and Y. Chen: “Weighted
proportional fair rate allocations in a differentiated
services network”, IEICE Trans. Communications, vol.
E85-B, no. 1, pp. 116-128 (2002).
(5) T. Yokoyama, K. Iida, H. Koga and S.
Yamaguchi: “Proposal for adaptive bandwidth
allocation using one-way feedback control for MPLS
networks”, IEICE Trans. Communications, vol. E90-B,
no. 12, pp. 3530-3540 (2007).
(6) M. Shimamura, K. Iida, H. Koga, Y.
Kadobayashi and S. Yamaguchi: “Hose bandwidth
allocation method to achieve minimum throughput
assurance service for provider provisioned VPNs”,
IPSJ Journal, vol. 49, no. 12, pp. 3967-3984 (2008).
(7) N. Duffield, P. Goyal, A. Greenberg, P. Mishra,
K. Ramakrishnan and J. Merwe: “Resource
management with hoses: point-to-cloud services for
virtual private networks”, IEEE/ACM Trans.
Networking, vol. 10, no. 5, pp. 679-692 (2002).
(8) Y. Liu, Y. Sun and M. Chen: “MTRA: An
on-line hose-model VPN provisioning algorithm”,
Telecommunication Systems, vol. 31, no. 4, pp.
379-398 (2006).
(9) R. Liao and A. Campbell: “Dynamic core
provisioning for quantitative differentiated services”,
IEEE/ACM Transactions on Networking, vol. 12, no.
3, pp. 429-442 (2004).
(10) J. Kenningtona, E. Olinicka and G. Spirideb:
“Basic mathematical programming models for
capacity allocation in mesh-based survivable

networks”, Omega, vol. 35, no. 6, pp. 629-644 (2007).
(11) T. Ishida, K. Ueda and T. Yakoh: “Fairness
and utilization in multipath network flow
optimization”, Proc. IEEE International Conference
on Industrial Informatics 2006, pp. 1096-1101 (2006).
(12) N. Chowdhury and R. Boutaba: “A survey of
network virtualization”, Computer Networks, vol. 54,
no. 5, pp. 862-876 (2010).

(2012年9月21日受付)
(2012年12月19日採録)

