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インターネットにおいて、アプリケーションサービス事業者の観点では、通信帯域が保証されるこ
とが望ましい。一方で、ネットワーク事業者の観点ではネットワークの利用効率を向上できること
が望ましい。そのため、有限な資源である帯域をどのように割り当てるのかが重要な課題となる。
特に、インターネットのトラフィックはバースト性が高く、静的な帯域割当は非効率となるため、
効率的な帯域割当手法が必要となる。本稿では、最低帯域保証サービスを実現するための、プロビ
ジョニングアルゴリズムを提案し、その有効性を示す。 

 
The traditional virtual private network (VPN), which provides best-effort or static bandwidth allocation 
service, does not provide sufficient support for bursty Internet traffic. To support bursty traffic, a VPN 
provider can offer minimum throughput assurance (MTA) service to customers. MTA service provides 
higher throughput predictability than best-effort VPN service. Although there are many proposed network 
architectures for MTA service, certain parameters should be decided offline as part of the provisioning 
process. Determining adequate values of such parameters is necessary for quality of service control of 
bursty Internet traffic by providers. The difficulty in such provisioning is to meet the minimum throughput 
requirements in any active state matrices. We propose a provisioning algorithm that uses nonlinear 
programming for MTA service. We then numerically demonstrate the proposed algorithm and its 
performance. 
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1. Introduction 
Virtual private networks (VPNs) are used by many 
organizations as private information networks 
connecting distant sites at costs lower than those 
possible with a network of leased lines; however, 
VPNs have difficulty meeting quality of service 
(QoS) requirements because they must share 
network resources among all users. To overcome 
this problem and satisfy some of the QoS 
requirements, a framework called 
provider-provisioned VPN (PPVPN) was developed 
by VPN providers. Because customers contract with 
the provider offering PPVPN, the provider must 
adequately allocate limited network resources and 
satisfy requirements for its customers. 
The current PPVPN does not support bursty 
Internet traffic well because it allocates network 
resources to customers statically. If VPN providers 
guarantee customers a static amount of bandwidth, 
the result is low bandwidth utilization. One way of 
supporting bursty Internet traffic is to assure the 
minimum throughput to customers. With minimum 
throughput assurance (MTA) service, a customer 
can attain substantially higher throughput than an 
agreed minimum throughput during periods of 
non-congestion. During periods of congestion, the 
minimum agreed throughput is provided as an 
average over a certain span of time. Therefore, MTA 
service can provide higher throughput predictability 
than best-effort VPN service. 
To further describe the MTA service, we illustrate 
throughput allocation scenarios in Figure 1. In the 
figure, aggregated traffic from site A1 to A2 and 
from site B1 to B2 are each assigned 50 Mb/s as a 
minimum throughput. We denote macro flow as 
aggregated traffic. Figure 1(a) depicts a scenario with 
no congestion, i.e., the macro flow from site B1 to 
B2 is idle. In this case, the macro flow from site A1 
to A2 can obtain more than the minimum 
throughput. Conversely, the throughput for the 
macro flow from site A1 to A2 is only 50 Mb/s when 
the link is congested, as illustrated in Figure 1(b); 
however, even in the congestion scenario, the MTA 
service can provide the minimum throughput for 
any macro flows.  
Much research on MTA service has been 
performed. Clark et al. proposed random early drop 
routers with in/out bit (RIO) [1] to allocate capacity 
for best-effort VPN service. According to their 
performance evaluation, RIO can allocate capacity 
with slight effect on round-trip time (RTT), which is 
considered an important milestone in MTA service. 
Fabrega et al. proposed a guaranteed minimum 
throughput service for TCP flows using 
measurement-based admission control [2]. Several 

MTA service methods have also been proposed 
based on available bit rate (ABR) service of 
asynchronous transfer mode (ATM) networks. Li et 
al. proposed a core-stateless congestion avoidance 
scheme for IP networks [3]. Lee et al. proposed a 
weighted proportional fair rate allocation (WPFRA) 
method for differentiated service (DiffServ) on the 
Internet [4]. Yokoyama et al. proposed a one-way 
version of the WPFRA method to improve its 
performance [5]. Shimamura et al. proposed an 
extension of the WPFRA method [6] for the VPN 
hose model [7] which is a VPN model to utilize the 
network resource efficiently. 
To apply the aforementioned methods, certain 
parameters should be decided offline. For example, 
RIO requires a target rate for each TCP micro/macro 
flow, and the WPFRA method requires the weight 
for each macro flow; however, no parameter 
determination algorithm has been proposed. The 
difficulty in achieving such a determination 
algorithm is to meet the minimum throughput 
requirements in any active state matrix (More 
detailed illustration of an active state matrix is given 
in Figure 4 within Section 3.2, in which each 
element of the matrix represents an active/idle state 
of traffic from a source to a destination. 
In this paper, we determine adequate parameters 
for the MTA service, and we define this as a 
provisioning. Although determination algorithms for 
network topology and active queue management 
have been proposed [8, 9], they cannot satisfy the 
minimum required throughput of every customer in 
MTA service when active state matrices change 
dynamically, i.e., elements of the active state matrix 
may be idle or may frequently switch from active to 
idle states. Therefore, these algorithms cannot be 
applied to the provisioning process for the MTA 
service. 
We propose a provisioning algorithm that uses 
mathematical programming, in particular, nonlinear 
programming (NLP), for providing MTA service in 
PPVPNs. Mathematical programming is widely and 
effectively used for network provisioning [10]. The 
proposed algorithm adequately distributes the 
limited network bandwidth to all customers within 
the given constraints. 
Following this Introduction, this paper is 
organized as follows. We describe the WPFRA 
method in Section 2. Section 3 presents our 
proposed provisioning algorithm for the MTA 
service. We demonstrate the effectiveness of our 
approach with quantitative results in Section 4 and 
describe the difference between our studies and 
related studies in Section 5. Finally, we offer our 
conclusions in Section 6. 
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2. Weight proportional fair rate 
allocation method 

In the Introduction, we argued that MTA service 
improves the throughput predictability of bursty 
traffic. To implement the MTA service, we set three 
requirements: 1) meet the minimum throughput 
requirement from customers in any active state 
matrix, 2) fairly distribute the spare bandwidth, and 
3) keep high network resource utilization to 
efficiently use limited network resources. 
The WPFRA method and its variants are 
approaches to the MTA service that has a potential 
to meet the three requirements above. By 
distributing spare bandwidth based on weight 
values, the WPFRA method provides weighted 
proportional fairness. Before using the WPFRA 
method, the VPN provider should decide the weight 
values for all combinations of source and 
destination sites. Deciding the weight values to 
satisfy the minimum throughput requirement 
(requirement (1) above) remains a challenge. 
Determining the weight values involves finding a 
common matrix of values that satisfy the minimum 
throughput requirement for all active state matrices. 
Before we propose a common weight matrix 
determination algorithm to satisfy minimum 
throughput requirements for all elements of the 
active state matrix, we first describe the WPFRA 
method. The WPFRA method can distribute the 
available bandwidth in proportion to the weight 
value of each macro flow. Edge and core routers 
form a VPN provider's network and provide 
feedback-driven traffic control to utilize the network 
bandwidth efficiently. 
Ingress and core routers periodically measure the 
amount of arriving traffic and calculate a fair share 
rate rf that indicates the amount of allocated 
capacity for a macro flow with a weight of one. A 
fair share rate is calculated for each output link in a 
router. Egress edge routers periodically send a 
notification packet to each ingress edge router, and 
core routers update the value of rf inside the 
notification packet if it is smaller than the current 
value stored in the packet. Ingress routers obtain the 
rf from the received notification packet and set the 
value to the explicit rate ER, which indicates that the 
allocated throughput for a macro flow has a weight 
of one. Finally, they calculate the allocated 
throughput as ER multiplied by the customer's 
weight. 
To illustrate how the WPFRA method determines 
the allocated throughput, we model the calculation 
process on Ref. [4] utilizing an algorithm depicted in 
Figure 2. 

To illustrate this algorithm, we provide the 
example depicted in Figure 3. In this example, there 
are four sites: customer A has two sites, A1 and A2, 
and customer B has two sites, B1 and B2. The traffic 
of customer A (B) originates at A1 (B1) and is 
destined for A2 (B2). As described in the figure, the 
values w(A1, A2) and w(B1, B2) are assigned weights of 1 
and 2, respectively. The numbers associated with 
links in the figure indicate the amount of bandwidth 
for each link. If C(I1, C1) is larger than 20, B(A1, A2) and 
B(B1, B2) become 20 and 40, respectively. Because C(I1, 
C1) is limited to 10, throughput calculation is difficult. 
Suppose customers A and B are both active, 
meaning both are producing traffic. Then, rf(I1, C1), rf(I2, 
C1), and rf(C1, E1) converge at 10, 45, and 25, 
respectively, based on the above algorithm. As a 
result, ER(I1, E1) becomes 10 and ER(I2, E1) becomes 25. 
Since w(A1, A2) and w(B1, B2) are 1 and 2, respectively, 
B(A1, A2) becomes 10 and B(B1, B2) becomes 50. These 
results are summarized in Table 1. The first two 
columns depict the active state field, a value of 1 
indicating an active state, a value of 0 indicating an 
idle state. 
As described above, the WPFRA method 
determines the explicit rate ER and the allocated 
bandwidth B of each customer, and these values are 
calculated from the topology, active state matrix, 
and weight matrix. The network topology is 
generally assumed to be constant during a long time, 
whereas the active state and weight matrices are 
dynamically changing. Therefore, the provider 
needs to determine a weight matrix that can 
accommodate any active state matrix. 
 
3. Weight determination algorithm 
In the previous section, we described the WPFRA 
method and the difficulty of determining adequate 
parameters for the WPFRA method. In this section, 
we propose the weight determination algorithm for 
allocating sufficient network resource to every 
customer using MTA service. The proposed 
algorithm is divided into two sub-algorithms: a 
weight matrix determination algorithm for each 
active state matrix; and a common weight matrix 
determination algorithm for every active state 
matrix. 
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Figure 1 Throughput allocation in MTA service 

 

 
Figure 2 WPFRA algorithm (Conventional algorithm) 

 

 
Figure 3 Example of throughput calculation: Network 

topology 
 

Table 1 Throughput calculation results in Figure 2 

 
 
Table 2 Example of weights calculated using NLP 

 
 
3.1 Weight matrix determination 

algorithm 
We first develop an algorithm to calculate 
adequate weight values based on network topology, 
a minimum throughput matrix, and an active state 
matrix. The provider needs to allocate sufficient 
bandwidth satisfying the minimum throughput of 
every customer using limited network resources. We 
assume these constraints as part of a mathematical 
programming problem in which the allocated 
throughput and spare bandwidth can be calculated 
using Eqs. (1) and (2. Let Bave be the average 
throughput of all customers, Bvar be the variance of 
the average throughput of all customers, M be the 
required throughput of customers, and U be the link 
utilization. Note that X represents a binary variable 
defined as follows: Set 0 in a case of idle state and 
set 1 in a case of active state. The objective function 
and constraints are formulated as follows: 

 Objective Function 
  * Bave - Bvar 

 Constraints 
  * B(m,n) ≥ M(m,n) ・ X(m,n) 
  * U(s,t) ≤ 1 
  * w(m,n) ≥ 1 
We adopt the objective function based on the 
evaluation index in Ref. [11], which specifies that 
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each customer can obtain high throughput and the 
allocated throughput among customers is balanced. 
Regarding alternative objective functions, we can 
alternatively utilize the functions maximizing the 
link utilization of all links in the network or 
maximizing the total throughput of all customers. 
The allocated throughput, spare bandwidth, and 
utilization are all represented by polynomials. Thus, 
this mathematical programming can be classified as 
nonlinear programming (NLP). Table 2 shows an 
example of calculated weights. In this table, the first 
three columns represent an active state matrix, the 
second three columns represent a calculated weight 
matrix using NLP, the third three columns represent 
the allocated bandwidth calculated from the weight 
matrix, the fourth column represents the resulting 
value of the objective function, and the fifth column 
represents the link utilization. In the given example, 
three customers (X, Y, Z) share a single 
bottlenecked link. The required minimum 
throughput of (X, Y, Z) is (10, 20, 60), and the 
bandwidth of the bottlenecked link is 100. The 
calculated weight values are listed for all active state 
matrices, i.e., (X, Y, Z) = (1, 1, 1), (X, Y, Z) = (1, 0, 1), 
and so on. All resulting allocated throughput values 
are equal to or greater than the respective minimum 
throughput requirements. 

 
3.2 Common weight matrix 

determination algorithm 
As we saw in Tables 1 and 2, the allocated 
throughput is affected by the active state matrix. An 
illustration of this effect is shown in Figure 4. The 
active state matrix represents an active/idle state of 
traffic from a source to a destination site, i.e., the 
values of 0 and 1 represent idle and active states, 
respectively. The minimum throughput matrix 
describes each customer's minimum throughput 
requirements from source site i to destination site j. 
The zero element of the active state matrix results in 
a zero value in the minimum throughput matrix at 
the same element in the active state matrix. 
The weight matrix consists of weight values used 
by the WPFRA method. When we fix the active state 
matrix, we can calculate a weight matrix Wk using 
NLP, however, if we change the active state matrix, 
the weight matrix Wk’ also changes. Since dynamic 
changes to the weight matrix is difficult implement, 
we aim to calculate a common weight matrix that 
meets the minimum throughput requirement for any 
active state matrix. Therefore, we need a strategy to 
find such a weight matrix. 
To derive a common weight matrix, we iteratively 
use NLP. Since NLP requires an initial weight matrix, 
the previously derived weight matrix for an active 

state matrix can be used as the initial NLP weight 
matrix with the input of another active state matrix. 
We hypothesize that this iteration of NLP converges 
on the common weight matrix and meet the 
minimum throughput requirements. Based on this 
hypothesis, we define a basic strategy to obtain the 
common weight matrix detailed as follows: 
Iteration: Previous output values (i.e., the weight 

matrix calculated by NLP) are utilized as an initial 
weight matrix in the next step. 
One distance shift: First, we define the number 

of elements that differ between two active state 
matrices as a distance. Through the iteration of 
active state matrices, we need to shift an active state 
matrix to other active state matrices. To avoid 
drastic shifts in active state matrices, we shift the 
current active state matrix to the next active state 
matrix by a distance of 1. For example, suppose an 
active state matrix is (0, 1, 1), where 0 and 1 
represent idle and active states, respectively, we set 
the next active state matrix to (0, 1, 0) because only 
the third element in these two active state matrices 
differ, thus the difference is 1. 
Normalization: The weights represent a 

proportional ratio of the allocated bandwidth, i.e., 
the calculated weight matrix (a, b, c) is equivalent to 
(ka, kb, kc), where k is a constant number. The 
allocated bandwidth calculated by these two weight 
matrices are the same. Therefore, we divide the 
weight matrix into collision groups, then normalize 
the grouped elements of the weight matrix, such as 
(ka, kb, kc)/k → (a, b, c), in each collision group. 
Stabilization: An element of the weight matrix 

corresponding to the zero element in the active state 
matrix can be selected for any value. To avoid 
needless change in weight values in such cases, we 
define constraints for such elements, i.e., we select 
the value obtained in the previous iteration. 
Search domain reduction: To avoid irrelevant 

searching, we set lower and upper limits on the 
variables of the objective function. The lower limit is 
1, derived directly from the constraints; the upper 
limit is (Cmin- Mmin)/Mmin, where Cmin represents the 
minimum value of the link bandwidth in the 
topology and Mmin represents the minimum value of 
the minimum required throughputs. To explain the 
reason of the upper limit, we suppose that the 
following: 1) multiple customers share the link with 
capacity Cmin in the network, 2) one customer 
requires the minimum required throughput Mmin, 3) 
the minimum weight value 1 is assigned to this 
customer, and 4) the total weight value α is assigned 
to other customers. In this case, because the limited 
link capacity Cmin should be shared among multiple 
customers, the following equation 1/(1+α) · Cmin ≥ 
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Mmin (i.e., α ≤ (Cmin - Mmin)/Mmin) should be satisfied. 
We construct our common weight determination 
algorithm based on the above strategy and illustrate 
it in Figure 5 using pseudocode. In our algorithm, 
we determine a representative weight matrix with 
values selected from a large number of calculated 
weight matrices utilizing a convergence index, 
which is defined as the maximum ratio of the 
number of common weight matrices to the number 
of all weight matrices. We call this index the batched 
convergence index. 
We show example behavior of the proposed 
algorithm in the context of Table 3. We suppose the 
required minimum throughput matrix of customers 
(X, Y, Z) is (10, 20, 60), respectively. There is a 
single bottleneck link with link capacity 100. In the 
first cycle of the proposed algorithm, after initializing 
the weight matrix to (1,1,1), four weight matrices 
(1,2,3), (1,1,3), (1,1,3), and (2,1,3) are calculated via 
NLP. Note that we skip non-congestion active state 
matrices because the weight matrices in such active 
state matrices can be arbitrary values. We denote 
such skipped values by (-,-,-). 
The highest distribution of batched tuples of (1, 1, 
3) is 0.5. Therefore, we select the weight matrix 
(1,1,3) as the representative weight matrix in the first 
cycle. This representative weight matrix is utilized as 
the initial weight matrix in the second cycle. Similar 
to the first cycle, four weight matrices are calculated 
via NLP, and the representative weight matrix 
(1,1,3) is selected in the second cycle. In this 
example, the weight matrix (1,1,3) is suitable to 
every active state matrix. 
Users of our provisioning algorithm should specify 
the required minimum throughput for each 
customer site so that the weight matrix satisfying 
minimum throughput requirements can be obtained. 
The fundamental calculation complexity is 

, where u is the number of customers, 
v is the number of sites per customer, and l is the 
number of calculation cycles. 

 

 
Figure 5 Pseudocode of the weight determination 

algorithm 
 

 
Figure 6 Experimental topology 

 

 
LoopNLP(iteration){ 
   InitAllWeights(weights); 
   SetInputValue(topology, reqbw); 
   for ( i=0; i<iteration; i++ ) { 
     foreach (pattern) { 
       weights = RunNLP(topology, 
         pattern, reqbw, weights); 
     } 
     normalization(pattern, weights); 
   } 
 } 
 
 RunNLP(t, p, b, w){ 
   foreach (p) { 
     if( active[i] == 0 ){ 
       # Stabilize value of w[i] 
       SetConstraint(w[i]); 
     } 
   } 
   SetSearchDomain(t, b); 
   ans = SolveNLP(t, p, b, w); 
 
   return ans; 
 } 
end{alltt} 
 
 begin{alltt} 
 InitAllWeights(weights){ 
   weights = (1, 1, ..., 1); 
 } 
 
normalization(pattern, weights){ 
   group = divide_group(pattern); 
 
   foreach (group) { 
      normalized_w[i] =  
          weights/min(weights); 
   } 
   return normalized_w[i]; 
 } 
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Figure 4 Common weight matrix 

 
 

Table 3 Example behavior of the proposed algorithm 

 
 

4. Numerical demonstration 
In the previous section, we presented our 
common weight matrix determination algorithm, 
which is based on the hypothesis that weight 
matrices converge through iterations of NLP. In this 
section, we demonstrate that the proposed 
algorithm converges on a common weight matrix 
that meets the minimum throughput requirements. 
We also investigate the impact of imbalanced 
minimum throughput requirements and whether 
links have spare bandwidth available. 
We use the network topology illustrated in Figure 
6 containing one core and three edge routers, which 

together form a star topology with a link capacity of 
80 on all links. All edge routers behave as both 
ingress and egress routers, i.e., traffic is bidirectional 
between each of a particular customer's sites. There 
are two customers (A, B), each of whom has three 
sites (A1, A2, A3) and (B1, B2, B3). Customer sites 
are connected to respective edge routers. 
In our numerical demonstration, we vary the 
required minimum throughput to investigate the 
impact of the imbalance ratio and the amount of the 
minimum throughput as follows: 

 
There is spare bandwidth in scenarios (b) and (d); 
further, the required minimum throughput values 
are imbalanced in scenarios (c) and (d). 
To evaluate the proposed algorithm, we define the 
following two evaluation indices: (1) the success rate, 
which is the number of cases satisfying the 
minimum required throughput using the 
representative weight matrix in each active state 
matrix; and (2) the average link bandwidth defined 
as the average of the ratio of the total throughput to 
the total capacity of active links. We calculate these 
values using the representative weight matrix 
calculated using our proposed algorithm. 
Figure 7 shows results for the four required 
minimum throughput scenarios listed above. The 
x-axis represents the amount of processing from 1 to 
10 iterations. The y-axis represents the resulting 
values of the batched convergence index, the 
success rate, and the average total link utilization. 
As the number of iterations increases, the batched 
convergence index converges, indicating that the 
representative weight matrix is, in fact, determined 
through such iterations. The average total link 
utilization remains constant at approximately 0.85, 
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although the number of iterations increases. This 
shows that the proposed algorithm retains the 
fundamental advantage of mathematical 
programming: i.e., the proposed algorithm can keep 
the overall average total link utilization under the 
given constrained, even as the number of iterations 
increases. 
We found that the success rate progressively 
converges to 1.0 for all required throughput, 
showing that the proposed algorithm can determine 
the common weight matrix from the required 
minimum throughput matrix. 
Next, we describe the impact of spare capacity on 
the success rate. Under spare capacity scenarios (b) 
and (d), the batched convergence index and the 
success rate is substantially lower than that of 
scenarios (a) and (c); this occurs because the 
calculated weights vary over a wide range due to the 
high latitude of values. 
Finally, we discuss the impact on the success rate 
of imbalanced required throughput among sites. 
Our proposed algorithm requires a relatively larger 
number of iterations for the success rate to converge 
in imbalanced request scenarios (c) and (d); this 
occurs because of the complicated network 
topology and requests, although it also 
demonstrates the effectiveness of our iterative 
algorithm. 

 
(a) Balanced requests/No spare capacity 

 
(b) Balanced requests/Spare capacity 

 
(c) Imbalanced requests/No spare capacity 

 
(d) Imbalanced requests/Spare capacity 

Figure 7 Success rate of the batched convergence 
index 
 

5. Related work 
In this section, we describe the difference 
between our proposed algorithm and two 
conventional provisioning algorithms. 
The first conventional algorithm [8] can determine 
adequate network topology for the VPN hose model 
[7]. It can reduce the required bandwidth and 
achieve high bandwidth efficiency. Although this 
algorithm is helpful in constructing the network 
topology, it cannot achieve the MTA service 
because the algorithm cannot allocate network 
resources to the customers adequately. 
The second conventional algorithm [9] adjusts 
parameters of a weight fair queuing (WFQ) 
scheduler. This algorithm achieves fairness for a 
single output link at the WFQ-supported router; 
however, it cannot support allocating available 
bandwidth across the entire network. Therefore, 
this algorithm cannot adapt to provide the MTA 
service. 
 
6. Conclusion 
To satisfy minimum throughput requirements of 
VPN customers, we proposed a provisioning 
algorithm that supports the MTA service. Our 
proposed algorithm is a necessary tool for QoS 
traffic control by providers. In our proposed 
algorithm, we first created an NLP to find a weight 
matrix for each active state matrix. Then we 
proposed a common weight matrix determination 
algorithm based on the hypothesis of convergence 
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in elements of the iteration of the NLP. Through 
preliminary performance evaluations, we showed 
indications of possibilities, i.e., the proposed 
algorithm can converge on a common weight 
matrix using the convergence index. We also 
evaluated the impact on convergence of the 
imbalanced amount of required throughput and the 
presence of spare bandwidth. In future work, to 
concentrate the convergence index more precisely 
and rapidly, we will focus on a pruning algorithm 
and consider highly correlated convergence indices. 
Furthermore, we attempt to apply the proposed 
algorithm to virtual network resource embedding 
problem in network virtualization environment [12]. 
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